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Предисловие

Компания "Халлибуртон Энерджи Сервисез" рада предоставить вниманию
сообщества нефтяной промышленности настоящее техническое исследование в
области скважинного метода ядерно-магнитного резонанса. ЯМР каротаж вызвал
настоящую революцию в области оценки коллекторских свойств, как этой новой
технологией, так и по результатам её комплексирования со стандартными методами
ГИС. С момента приобретения компании Ньюмар в 1997 году "Халлибуртон"
сосредоточила свои усилия на исследованиях возможностей расширения
использования метода ядерно-магнитного резонанса, и интерпретации стандартного
комплекса с точки зрения методологии ЯМР с целью расширения области его
применения. Для этого был создан новый скважинный прибор, разработаны
современные методы регистрации и обработки сигналов, и для нужд нефтяной
индустрии внедрены пакеты интерпретации (такие как обработка в режиме реального
времени). Кроме объяснения основных принципов и методов применения ЯМР, данная
монография способствует осмыслению и освоению последних достижений в области
каротажа ядерно-магнитного резонанса.

Эта книга была написана тремя нашими ведущими специалистами в области
технологии ЯМР и рассмотрена многими признанными профессионалами нашей
компании, из организаций клиентов и из других учреждений. Я особенно признателен
за увлеченность и преданность делу г-ну Джорджу Р. Коатесу, директору отдела
разработки месторождений хьюстонского технологического центра компании "
Халлибуртон ", доктору Ли Чи Хиао, старшему научному сотруднику и руководителю
данного проекта, доктору Манфреду Праммеру, президенту компании Ньюмар
Корпорейшн, а также редакторам: доктору Ричарду Сигалу и г-ну Стиву Боличу.

Будучи крупнейшей сервисной компанией в Мире, специализирующейся в области
обслуживания нефтяных компаний, "Халлибуртон" предоставляет ценные услуги
самого высокого качества не только в области поставок оборудования, но и в области
разработки и внедрения передовых наукоемких технологий. Настоящая книга
представляет собой яркий пример такой деятельности, и я надеюсь, что вы найдете её в
высшей степени полезной для оценки возможностей и преимуществ, которые может
дать вам ЯМР.

Дик Чейни
Президент компании "Халлибуртон"
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Введение

Промысловая геофизика и методы экономической оценки коллекторов были заметно
усовершенствованы в вопросах определения пористости и насыщения флюидами, но
не в области систематического определения проницаемости. Именно эта проблема и
вызвала интерес, который нефтяная промышленность проявляет к ядерно-магнитному
резонансу с тех пор, как в 1960 году были опубликованы материалы первого научного
исследования, показавашие взаимосвязь между ЯМР и проницаемостью.

К сожалению, этот интерес оставался неудовлетворенным на протяжении примерно 30
летнего периода – в ожидании надежного измерения релаксации ЯМР в стволе
скважины. В 1992 году, когда компания Ньюмар предложила выполнение каротажных
работ методом на основе ядерно-магнитного резонанса, этому ожиданию пришел
конец, и вскоре была доказана возможность надежного определения проницаемости,
особенно в сильно глинистых песчаных коллекторах.

Однако эти достижения в области проницаемости не единственное преимущество,
которое дает, основанный на регистрации эхо-сигналов, каротаж ЯМР. Так-же
оказалась доступной и петрофизическая информация о многих других параметрах:
суммарной пористости не зависящей от литологии, водо- газо- и нефтенасыщенности,
определяемых в отсутствии данных других методов ГИС, а также вязкости нефти.
Кроме того стали возможны для анализа и другие характеристики коллектора, и мы
уверены в том, что новый метод измерений на основе ЯМР каротажа станет одним из
богатейших источников информации об составе, свойствах и распределении пластовых
флюидов. 

Настоящая книга готовилась как средство ознакомления специалистов-нефтяников с
выдающимися достижениями в этой области и поддержки всех тех, кто действительно
заинтересован в передовой технологии оценки коллекторских свойств.

Джордж Коатес 
Директор отдела разработки месторождений "Халлибуртон Энерджи Сервисез"
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После своего открытия в 1946 году, ядерно-

магнитный резонанс стал важным

инструментом в физике, химии, биологии и

медицине. С изобретением каротажных

приборов ЯМР использующих постоянные

магниты и радиочастотные импульсы стало

возможным применение сложных

петрофизических методик измерения свойств

пластовых флюидов в природных условиях.

Эти способности метода ЯМР открыли

новую эру в оценке коллекторских свойств и

анализе керна, и стали только введением в

революционные изменения, которые он внес

в выше перечисленные области. В данной

главе суммируются возможности

применения и результаты каротажа ЯМР для

оценки петрофизических свойств.

ЯМР в медицине
Метод визуализации магнитным резонансом (MRI) является одним из наиболее значимых

инструментов клинической диагностики в современной медицине. Пациент помещается в

изолированную камеру системы MRI, после этого, от определенного участка, могут быть

зарегистрированы сигналы ядер водорода, которые затем используются для изображения

внутренней структуры тела. На этих изображениях могут быть обнаружены различные
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физические аномалии и, таким образом, улучшена диагностика заболевания или участка

поражения.

Фотография «среза» человеческой головы, полученной с помощью томографа,

приводиться на рисунке 1.1 и иллюстрирует два важных свойства ЯМР. Во-первых,

сигналы, используемые для изображения «среза» получены от четко определенного

объма, обычно тонкого сечения объекта исследования. Из-за физики явления ядерного

резонанса, изображение получается резким и содержит только информацию от

ограниченного участка, при этом объемы вещества перед- или за областью исследования

остаются «невидимыми». Во-вторых, видны только флюиды (такие как кровеносные

сосуды, полости и мягкие ткани), а твердые компоненты (кости) генерируют сигнал

который, как правило, спадает слишком быстро и не может регистрироваться. Используя

преимущества этих двух свойств метода, врачи могут диагностировать заболевания, не

вникая в сложности принципов физики ЯМР.

Рисунок 1.1

Это изображение среза человеческой головы, иллюстрирует принцип работы медицинского ЯМР. На
фотографии более светлым цветом показаны ткани, в которых содержится большое количество
жидкости (например вещество мозга), в то время как темные области соответствуют тканям с низким
содержанием жидкости (например кости черепа). Как правило, толщина слоя данных, используемого
в каждом разрезе, для визуализации, во много раз больше размера отдельного объекта, который
может быть представлен на разрезе. 
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Те-же самые принципы ЯМР, что используются для медицинской диагностики аномалий

человеческого тела, могут применяться для анализа флюидов, содержащихся в поровом

пространстве пород коллекторов. И так-же как медикам, для использования изображений

«срезов» нет необходимости быть специалистами в области ЯМР, так и геологам,

геофизикам, петрофизикам и инженерам-нефтяникам совсем не обязательно разбираться в

деталях ядерной физики, чтобы успешно применять данные метода визуализации

магнитного резонанса для интерпретации коллекторских свойств.

ЯМР каротаж
Метод визуализации магнитного резонанса (MRIL �) был внедрен компаний NUMAR в

1991 г.1, при этом за основу был взят принцип медицинской томографии, или

лабораторных измерений ЯМР и вывернут «наизнанку». Таким образом, вместо того,

чтобы помещать объект исследования в центр инструмента, сам прибор помещается в

ствол скважины вскрывающей анализируемые отложения.

В середине зонда MRIL расположен постоянный магнит котороый создает поле

воздействующее на компоненты породы. Антенна, навитая вокруг магнита, через точно

отмеренные промежутки времени посылает в пласт импульсы в диапазоне радиочастот, в

форме осциллирующего магнитного поля. В промежутках между этими импульсами,

антенна используется для измерения спада «эхо» сигнала от тех протонов водорода,

которые вошли в резонанс с полем постоянного магнита. 

Поскольку существует линейная зависимость между частотой резонанса протонов и силой

поля постоянного магнита, частота передаваемой и принимаемой энергии, может быть

настроена на исследование цилиндрических объемов разного диаметра вокруг зонда

MRIL. Эта настройка приборов ЯМР на определенную частоту, позволяет получать сигнал

(изображение) от узких полос «срезов» либо пациента в госпитале, либо породы. 



 Каротаж ЯМР. Принципы и применение
____________________________________________________________________________________________

____________________________________________________________________________________________
5           Краткое изложение применения метода ЯМР и его преимуществ                                                                                       Глава 1

На рисунке 1.2 показаны цилиндрические «объемы исследования» прибора MRIL-Prime2

котрый был разработан в 1998 году. Диаметр и толщина каждого из цилиндров задается

выбором основной частоты и шириной полосы пропускания, на которые настраиваются

приемное и передающее устройства зонда MRIL. Диаметры этих цилиндров зависят от

температуры, но как правило находятся в пределах от 14 до 16 дюймов.

Сравнение зонда MRIL с другими скважинными приборами
Поскольку сигнал магнитого резонанса приходит только от флюидов3, свойства матрицы

породы не оказывают влияние на пористость измеренную MRIL, и соответственно не

требуется предварительной калибровки на литологию коллектора. Эти свойства

Зонд MRILСкважина

Девять цилиндрических
областей исследования
(каждая толщиной в 1-мм и
отстоящая от соседней на
расстояние 1-мм)

В области исследования
видны только флюиды

Рисунок 1.2 Прибор MRIL-Prime может работать на девяти частотах одновременно.
Использование многочастотных измерений позволяет получать независимые данные из
многочисленных концентрических областей цилиндрической формы; таким образом
улучшается отношение сигнал/шум, увеличивается скорость записи и появляется
возможность применения различных циклов активации для сложных случаев.
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принципиально отличают зонд MRIL обычных приборов пористости ГИС. Данные

стандартных методов, таких как нейтронный, плотностной и акустика (время пробега)

зависят от всех параметров породы-коллектора.4,5 Поскольку коллектора, как правило,

содержат больше матрицы, чем заполненной жидкой фазой пористости, зонды

стандартного комплекса имеют тенденцию в значительно большей степени

регистрировать сигнал от породы, чем от собственно флюидов. Зонды стандартного

комплекса сопротивлений, хотя исключительно чувствительны к заполненному флюидами

пространству и традиционно используются для оценки количества воды в коллекторах, не

могут считаться истинно методом регистрации флюидов. Их показания сильно зависят от

присутствия проводящих минералов и для корректной интерпретации необходимо знание

свойств и пластовой воды и, собственно, породы-коллектора.

Зонды MRIL дают информацию трех типов, каждый из которых делает этот метод

уникальным, среди всего семейства каротажных приборов:

� информацию о количестве флюидов в породе;

� информацию о свойствах этих флюидов;

� информацию о распределении флюидов по порам разного размера;

Количество флюидов
Прибор MRIL может измерять непосредственно плотность содержания ядер водорода в

поровых флюидах.6 Поскольку известна плотность содержания ядер водорода в воде,

данные MRIL могут быть пересчитаны в кажущуюся водонасыщенную пористость. Эта

конверсия делается без дополнительной информации о минеральном составе обломочной

части породы и без учета возможности присутствия микроэлементов (например бора),

которые могут вносить помехи в измерения пористости нейтронным методом. 

Свойства флюидов
Медицинская томография основана на возможности связи специфичных медицинских

характеристик или свойств органов тела с различным поведением ЯМР сигнала.
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Аналогичный подход может быть реализован приборами MRIL, для анализа флюидов в

тонкой зоне на глубине в несколько дюймов от стенки скважины. Зондом MRIL можно

определять наличие и количество различных пластовых флюидов (вода, нефть и газ),7-11

равно как и их некоторые специфичные свойства (например вязкость)12. Оба устройства –

и медицинский и скважинный - MRIL проводят свои измерения при помощи особых серий

импульсов или «активаций», которые усиливают их возможности распознования

конкретных характеристик флюидов. 

Размер пор и пористость
ЯМР свойства флюида в поровом пространстве заметно отличаются от свойств жидкости

в объеме. При уменьшении размера пор содержащих воду возрастает разница между

кажущимися свойствами поровой и свободной воды.13 Для получения информации о

рапределении пор по размерам, необходимой для рассчетов таких исключительно важных

петрофизических параметов как проницаемость и объем капиллярно-связанной воды,

применяются сравнительно простые методики 14,15.

Микро-пористость связанная с глинами и некоторыми другими минералами, обычно

содержит воду которая, с точки зрения ЯМР, ведет себя практически как твердое

вещество. Вода, находящаяся в этих порах обладает очень быстрым «временем

релаксации». Из-за этих быстрых времен, такую воду сложнее распозновать, чем

например, подвижную воду, находящуюся в крупных порах. Ранние поколения приборов

не могли регистрировать сигнал от микопор и, поскольку, в основном в ней содержалась

вода связанная с глинистой компонентой, измеренная пористость часто характеризовалась

как «эффективная». Современные каротажные зонды MRIL, обязательно регистрируют все

флюиды порового пространства и измерения пористости выполняемые ими называются

измерениями «общей или суммарной пористости». Данные о распределении пор по

размеру, получаемые от этих приборов, используются для рассчета эффективной

пористости, которая имитирует пористость, измеренную предыдущими поколениями

приборов ЯМР.16
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В дополнение, одной из ключевой позиций в философии ЯМР является возможность

дублирования измерений, проведенных зондом в скважине, лабораторными данными,

полученными на образцах керна. Эта возможность проведения повторных измерений при

различных условиях, позволяет исследователям осуществлять калибровку ЯМР-сигналов,

а остальным пользователям - количественно оценивать интересующие параметры (такие

как размер пор).17-19

На рисунке 1.3 приводиться сравнение сигнала MRIL и данных получаемых зондами

стандартного комплекса.20 Обычная объемная модель используемая в сравнении состоит

из двух компонент – матрицы и поровых флюидов. Матрица состоит из глинистых и не-

глинистых минералов, а флюидная компонента – из воды и углеводородов. В общем

случае, поровые флюиды могут быть подразделены на воду связанную с глинистой

компонентой, капиллярно-связанную и подвижную воду, газ, легкую, средней вязкости и

тяжелую нефть.

Несмотря на то, что методы стандартного комплекса, такие как нейтронный, плотностной

и акустический дают объемный сигнал от всех компонент модели, они значительно более

чувствительны к материалу матрицы, чем к поровым флюидам. Кроме того, на результаты

этих методов сильное влияние оказывает скважина и глинистая корка, а их объемы

измерений далеко не так хорошо определены, как у прибора MRIL. 

Показания приборов сопротивления, таких как индукционный зонд и БКЗ, зависят от

наличия проводящих флюидов: глинисто-связанной, капиллярной и подвижной воды. На

основании контраста проводимостей между 1) глинисто-связанной и 2) капиллярно-

связанной водой, для более достоверной оценки водонасыщенности, были разработаны

модели двойной воды и Ваксмана-Смита. Однако даже с их применением, выделение

продуктивных интервалов по-прежнему вызывает сложности, т.к. нет возможности

разделения в проводимости свободной и капиллярно-связанной воды. Так-же как и в

случае с зондами пористости, приборы сопротивления весьма чувствительны к условиям

скважины и наличию глинистой корки, а их объемы исследования определены нечетко.
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Для рассчета пористости и водонасыщенности коллектора, при интерпретации

стандартного каротажа, используются данные методов пористости и сопротивления, с

введенными поправками за условия измерения. Оценка точности измерений выполняемых

зондами, выбор соответствующих значений констант уравнений и приведение в

соответствие различных величин вертикального разрешения и глубин исследования

приборов – добавляют сложностей при их обработке. Кроме того, разделение нефти на

легкую, средней вязкости и тяжелую, по данным стандартного комплекса невозможно.

Как показано на рисунке 1.3, пористость MRIL не зависит от состава матрицы, т.е.

определяется только флюидами находящимися в порах. Различия в ЯМР-свойствах

флюидов, таких как времена релаксации (Т1 и Т2) и диффузивность (D) позволяют

выделять (в зоне исследования) связанную и свободную воду, газ, легкую, средней

вязкости и тяжелую нефть. Объем исследования у прибора MRIL определен очень четко,

следовательно, если глинистая корка и неоднородности ствола скважины не попадают в

него, то они совершенно не влияют на измерения ЯМР.

Объемная модель на рисунке 1.3 не включает остальные параметры, которые можно

определять по данным MRIL, такие как: размер пор, проницаемость коллектора, наличие

глин, каверн и трещин; и свойства углеводородов такие как: вязкость и состав. Эти

факторы воздействуют на измерения MRIL, а их влияние может быть оценено

количественно и используется для получения исключительно важной информации при

описании и характеристике коллектора. Стандартные методы к ним нечувствительны.
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Рисунок 1.3  Данные MRIL принципиально отличаются от остальных каротажных методов. Пористость ЯМР не зависит от литологии матрицы, а
суммарный сигнал определяется свойствами флюидов. Благодаря наличию разности во временах релаксации и/или диффузии флюидов, результаты MRIL
могут использоваться для разделения воды на глинисто-, капиллярно-связанную и подвижную, выделения газоносных интервалов, коллекторов с легкой и
вязкой нефтью. Часто можно получать дополнительную информацию: распределение пор по размерам, проницаемость, свойства УВ; наличие каверн, трещин
и размер зерен обломочной части, так-же могут быть получены, поскольку четко определен объем исследования. Неоднородности ствола скважины, и
свойства БР оказывают незначительное влияние на измерения MRIL.
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Полевые материалы каротажа ЯМР
До того момента, как в коллекторе проводится ЯМР-каротаж, протоны поровых флюидов

ориентированы случайным образом. Когда зонд проходит через слой породы, он создает в

нем магнитное поле, которое активизирует протоны. Сначала, поле от постоянных

магнитов поворачивает или поляризует оси спинов в заданном направлении. Затем

включается осциллирующее поле скважинного прибора, которое разворачивает эти

протоны выводя их из равновесного состояния. После прекращения действия

осциллирующего поля, протоны начинают разворачиваться обратно или релаксировать,

возвращаясь в свое первоначальное состояние соответствующее направлению статичного

поля.21 Используются специально разработанные последовательности (циклы) импульсов,

для генерирования серий так называемых эхо-сигналов спинов, которые затем измеряются

прибором ЯМР и могут быть изображены на каротажных диаграммах как спад эхо-

сигналов. Эти спады эхо-сигналов являются основным полевыми данными ЯМР.

Для генерации спада эхо-сигнала, показанного на рисунке 1.4, скважинный прибор ЯМР

регистрирует амплитуды отдельных эхо-импульсов от спинов во времени. Поскольку эхо-

сигнал записывается в течении очень малого промежутка времени, зонд MRIL

продвигается не более, чем на несколько дюймов по скважине во время их регистрации.

Записанные эхо-сигналы могут быть изображены на каротажной диаграмме как функция

глубин. 

Начальная амплитуда спада эхо-сигнала прямо пропорциональна числу ядер водорода,

связанных с поровыми флюидами, находящимися в чувствительном объеме.

Следовательно, эта амплитуда может быть откалибрована на пористость. Регистрируемый

эхо-сигнал можно сопоставлять как с параметрами записи, так и со свойствами поровых

флюидов, попавших в зону исследования. Параметры записи включают в себя время

между эхо-сигналами (ТЕ) и время поляризации (TW). ТЕ – это промежуток времени

между отдельными эхо-импульсами в сигнале спада, а TW – время между прекращением

измерения одного эхо-сигнала и началом измерения следующего. Оба времени ТЕ - и TW

могут меняться для корректировки информации содержащейся в регистрируемых данных.



                                                                                                                                         Halliburton Energy Services
_____________________________________________________________________________________________

_____________________________________________________________________________________________
Глава 1                                                                                             Краткое изложение применения метода ЯМР и его преимуществ       12

Свойства поровых флюидов влияющие на эхо-сигналы это : углеводородный индекс (HI),

время продольной релаксации (Т1), время поперечной релаксации (Т2) и диффузивность

(D). HI – мера плотности атомов водорода, находящихся во флюиде. Т1 – показатель того,

как быстро развернутые потоны флюда релаксируют в продольном направлении (по

отношению к оси статичного магнитного поля), а Т2 – соответственно показатель

поперечной релаксации (опять-же, по отношению к оси статичного магнитного поля), D –

мера величины случайного смещения молекулы флюида.
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Рисунок 1.4 Спад эхо-сигналов, который зависит от количества и распределения водорода во флюидах,
измеряется записью снижения амплитуды релаксации во времени. Петрофизики могут использовать данные о
скорости спада, для типизации поровых флюидов и характеристики их распределения по порам. В этом примере,
эхо-сигналы были записаны со временем ТЕ равным 1 мсек. Отдельные точки показывают собственно полевые
данные, а сплошная кривая - их осреднение.
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Пористость по ЯМР
Начальная амплитуда спада полевого эхо-сигнала пропорциональна числу

поляризованных ядер водорода в поровом флюиде. Полевая пористость равняется

отношению этой амплитуды к величине сигнала прибора помещенного в ёмкость,

заполненную водой (т.е. среду со 100% водонасыщенностью). Эта пористость не зависит

от литологии матрицы породы и может быть проверена сопоставлением ЯМР-измерений

на керне со стандартными измерениями в лабораторных условиях.

Точность полевых измерений пористости, в основном, определяется тремя факторами:17

� достаточно длинным временем TW, чтобы во флюиде была достигнута полная

поляризация ядер водорода ;

� достаточно коротким временем TЕ, чтобы был получен спад от флюидов,

связанных с пористостью глин и остальными порами малых размеров ;

� соответствием числа ядер водорода во флюиде этому параметру в равном

объеме воды, т.е. HI = 1 ;

При условии, что выполнены перечисленные выше условия, пористость ЯМР является

наиболее точным измерением, которое можно получить в современной скважинной

геофизике. 

Первый и третий фактор требуют особого внимания только если речь идет о газе или

легких углеводородах. В этих случаях необходимо использовать специально

разработанные активации, которые позволяют получать дополнительную информацию,

для ввода поправок. Второй фактор являлся проблемой для приборов ранних поколений,

которые, в общем случае, не могли «видеть» воду связанную с глинистыми минералами.

Поскольку при анализе глинистых песчаников, пористость не связанная с глинистой

компонентой, называлась «эффективной» пористостью, исторически сложилось, что ЯМР

пористость (MPHI) так-же называлась «эффективной». Современные приборы MRIL

используя короткое время ТЕ (0.6 мсек.) с частичной поляризацией и длинное ТЕ (1.2

мсек.) с полной поляризацией, меряют суммарную пористость (MSIG). Это деление

пористости полезно при петрофизических анализах и часто соответствует другим
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змерениям эффективной пористости и глинисто связанной воды. Разделение пористости

на эффективную и глинисто-связанную, в некоторой степени, зависит от используемого

метода, поэтому другие разделения могут отличаться от используемого в ЯМР. 

Выполнение ЯМР измерений на керне – вполне обычная процедура для лабораторных

анализов. Пористость может быть измерена с достаточно короткими временами ТЕ и

достаточно длинными TW, чтобы получить данные от всего порового пространства

доступного ЯМР. Тысячи измерений проведенных в лабораторных условиях

подтверждают наличие исключительно хорошего совпадения (лучше 1%) между

пористостью по ЯМР и пористостью по гелию. На рисунке 1.5 показан пример такой

корреляции. 

Рисунок 1.5 Пример хорошего совпадения пористости чистых песчаников, померянной в
лабораторных условиях методом ЯМР и стандартных измерений. Разброс значений ЯМР-
пористости, как правило, находиться в пределах �1 е.п., от обычных измерений. Показаны
ЯМР данные, измеренные при двух значениях ТЕ соответственно 0.5 и 1.2 мсек. Сравнение
данных керна и ЯМР может указывать на наличие микропористости (флюиды в микропорах
обладают быстрыми временами, которые наблюдаются при ТЕ = 0.5 мсек., но не могут
регистрироваться при ТЕ = 1.2 мсек.). В данном случае, микропористость отсутствует, поэтому
“эффективная” пористость MPHI и суммарная MSIG одинаковы.
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Распределение Т2 по ЯМР
Амплитуда спада эхо-сигнала спина, может быть хорошо описана серией

экспоненциальных функций, с различными декрементами. Набор коэффицииэнтов

затухания образует спектр затухания (спада) или распределение времени поперечной

релаксации (Т2). Для водонасыщенной породы можно математически доказать, что кривая

спада связанная с одиночной порой будет описываться одной экспонентой, декремент

(коэффициэнт) которой будет пропорционален размеру поры; таким образом, маленьким

порам будут соответствовать меньшие значения Т2, а у более крупным – большие. 13,22 В

любом интервале скважины, участок породы, исследуемый прибором MRIL, будет

содержать поры разного размера. Следовательно, на заданном участке, распределение

пористости будет описываться много-экспонентным спадом, с каждым значением Т2

соответствующим своему размеру поры. На рисунке 1.6 показано распределение времени

Т2 полученное от спада эхо-синала, изображенного на рисунке 1.4.

Если область под кривой распределения Т2 определена правильно, то она соответствует

начальной амплитуде эхо-сигнала. Следовательно, распределение времени Т2 может быть

непосредственно откалибровано на пористость. По существу, основная задача прибора

ЯМР и связанного с ним программного обеспечения регистрации данных - обеспечить

точное описание распределения времени релаксации Т2, на каждой заданной глубине

скважины. С точки зрения этого распределения, MPHI представляет собой область под

кривой со значениями Т2 � 4мсек., MCBW - область со значениями Т2 � 4мсек., и MSIG –

соответствует общей области.

Распределение Т2 в ЯМР может быть представлено в трех различных видах записи:

волновым распределением, спектральной визуализации и инкрементным (бинарным)

распределением. Каждый из них представляет собой график пористости от значения Т2 и,

следовательно, от размера пор. Эти три вида представляют собой различные изображения

одного и того-же набора данных. На рисунке 1.7 приводиться пример изображения видов

записи. 
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Индекс свободного флюида (ИСФ) и суммарный объем остаточной воды

по ЯМР
Пористость и данные о распределении пор по размерам полученные по ЯМР, могут быть

использованы для оценки проницаемости и пористости которая, в принципе, может

отдавать флюиды (т.е. объема подвижных флюидов).

Рисунок 1.6 При помощи математического процесса называемого инверсией, данные спада эхо-
сигналов могут быть конвертированы в распределение T2. Такое распределение, является “наиболее
вероятным” решением, которое дает соответствующий спад. (Распределение T2, показанное на этом
рисунке, соответствует спаду эхо-сигналов, помещенному на рисунке 1.4). При соответствующей
калибровке, область, под кривой распределения соответствует пористости. Данное распределение
соответствует полностью (100%) водонасыщенной породе.  Если в поровом пространстве,
присутствуют углеводороды, то распределение T2 будет меняться в зависимости от типа УВ, их
вязкости и количества.
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Рисунок 1.7 Распределение Т2 может быть показано в трех различных
форматах: суммарных амплитуд с инкрементным распределением (первая
колонка); в цветной кодировке спектра (третья колонка) и волновом
распределении Т2 (четвертая). Стандартный набор инкрементов соответствует
временам спада 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 и 1024  мсек., в случае
иллюстрации MSIG, и итервалу 4-1024 мсек., если показано MPHI. Например 8
мсек. инкремент, соответствует интервалу 6-12 мсек. Поскольку в скважинных
данных, по сравнению с лабораторными, значительно больше шума, на
каротажных  материалах MRIL можно получать только относительно грубое
распределение Т2.
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Оцененная по ЯМР пористость, содержащая подвижные флюиды, называется индексом

свободного флюида (MFFI или ИСФ). Оценка ИСФ основана на предположении, что

подвижные флюиды находятся в крупных порах, а связанные - в порах малого размера.

Поскольку значения Т2 коррелируются с размером пор, можно выбрать такую величину,

ниже которой все флюиды будут находиться в микропорах, а выше – в порах крупного

размера. Это значение Т2 называется граничным значением или величиной «отсечки»

(Т2cutoff).23,24 

При разделении распределения Т2, параметр Т2cutoff так-же делит величину MPHI на индекс

свободного флюида (MFFI) и пористость связанных флюидов, или суммарный остаточный

объем (BVI), как это показано на рисунках 1.8 и 1.9. 

Рисунок 1.8 Распределение состоит из подвижной (MFFI) и неподвижных (BVI и MCBW)
компонент. Поскольку основным фактором контролирующим количество флюидов способных
двигаться, является размер пор, а спектр T2 часто связывается с распределением пор по размерам,
граничное значение (отсечка) T2 должно соответствовать непосредственно размеру пор при котором,
(и меньше которого), флюиды не будут течь. Эта информация служит основой для разложения MPHI
на MFFI и BVI.
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Рисунок 1.9 На примере мелкозернистого разреза из Мексиканского
залива, показаны вариации в значениях BVI (четвертая колонка).
Седиментационный цикл с увеличением зернистости к кровле, в
интервале х160 - х255 предполагается на основании изменений ГК и BVI.
Если бы в указанном интервале, флюидом эффективного насыщения была
бы преимущественно нефть, то изменения в значениях связанной воды
объяснили уменьшение сопротивления к подошве. Участок х190 - х225,
мог быть проинтерпретирован как переходная зона, однако в данном
случае он объясняется только изменениями в размере зернистости с
глубиной.
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Граничное значение Т2cutoff может быть определено в лабораторных условиях на

полностью водонасыщенных образцах керна. В частности, проводится сравнение между

распределениеми Т2 от полностью и частично водонасыщенного образца; последнее

состояние, как правило достигается центрифугированием образца керна при заданном

капиллярном давлении воздух-вода.23 Хотя на значения отсечки Т2cutoff влияют

капиллярное давление, литология и характеристики порового пространства, обычно

используемая практика – устанавливать собственные величины граничных значений, для

конкретных месторождений. Так например, для Мексиканского залива величина Т2cutoff

равна 33 и 92 мсек., соответственно для песков и карбонатов.23 Как правило, наиболее

точные величины граничных значений получают на образцах керна, отобранных из

интервала где так-же был записан каротаж прибором MRIL. 

Проницаемость по ЯМР
Свойства релаксации ЯМР на образцах породы, зависят от пористости, размера пор,

взаимодействий флюид-пора и минералогии. Рассчет проницаемости по ЯМР

основывается на теоретических моделях, которые связывают увеличение проницаемости с

возрастанием пористости и размера пор.24-29 Были разработаны два связанных между

собой класса моделей проницаемости. Модель свободных флюидов или модель Коатеса,

может применяться в случаях когда коллектор содержит воду и/или углеводороды.

Модель средних значений Т2 применима к поровым системам содержащим только воду.30

Для создания собственной локальной модели необходимы измерения на керне и их

корректировка. На рисунке 1.10 показано, что спад эхо-сигнала несет в себе информацию

о проницаемости породы. Рисунок 1.11 иллюстрирует как модель Коатеса может быть

откалибрована с помощью лабораторных данных керна. На рисунке 1.12 показана

проницаемость MRIL полученная по скорректированной модели Коатеса. 



 Каротаж ЯМР. Принципы и применение
____________________________________________________________________________________________

____________________________________________________________________________________________
21           Краткое изложение применения метода ЯМР и его преимуществ                                                                                       Глава 1

Время (мсек)
-5

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250

П
ор
ис
то
ст
ь 

(е
.п

.)

MPHI = 36, FFI= 30, BVI=6, PERM = 4,200 mD

MPHI = 36, FFI= 6, BVI= 30, PERM = 6.7 mD

Рисунок 1.10 Две серии эхо-сигналов были получены на образцах с разной проницаемостью. Обе
породы имели одинаковую пористость, но различались по размеру пор. Это различие привело к сдвигу
распределения T2 и, следовательно, к различным значениям отношения MFFI к BVI. Проницаемости,
значения которых так-же показаны на рисунке, были рассчитаны по модели Коатеса, {k =
[(MPHI/C)2(MFFI/BVI)]2, где  k- проницаемость породы, а C- константа, зависящая от типа коллектора}.

Рисунок 1.11 Кроссплот использующий данные керна для определения константы С в модели Коатеса.
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Рисунок 1.12 На этом фрагменте каротажной диаграммы, во второй
колонке показана проницаемость MRIL рассчитанная по
модифицированной модели Коатеса.
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ЯМР-свойства пластовых флюидов
Вода связанная с глинистой компонентой, капиллярно-связанная и свободная вода

занимают различные места и находятся в порах разного размера. Жидкие углеводороды

отличаются от воды по положению в поровом пространстве и, обычно, сосредоточены в

относительно крупных порах. Они так-же отличаются друг-от-друга и от воды по

величине вязкости и диффузии. Каротаж ЯМР использует эти различия для определения

типа и распространения флюидов в порах. На рисунке 1.13 показаны качественные

характеристики ЯМР-свойств различных флюидов в пророде. 31-34 В общем случае,

связанные флюиды имеют очень короткие времена Т1 и Т2, при замедленной

диффузивности (D), которая связана с ограниченной возможностью движения отдельных

молекул в порах малого размера. Свободная вода, как правило, дает средние значения Т1,

Т2 и D. Углеводороды, такие как природный газ, легкая, средняя и тяжелая нефть

обладают весьма различными ЯМР-характеристиками. У природных газов очень длинные

времена Т1 при очень коротких Т2 и релаксациях описывающихся моно-экспонентными

спадами. ЯМР характеристики нефтей разнятся очень сильно и в значительной мере

зависят от их вязкостей. Легкие нефти обладают большей диффузией, у них более

длинные времена Т1 и Т2 и релаксация нередко происходит по моно-экспонентному спаду.

При возрастании вязкости, смесь углеводородов становится все более сложной,

диффузивность уменьшается, так-же как и времена Т1 и Т2 , и с этими событиями связаны

сложные много-экспонентные спады. Основываясь на уникальных ЯМР свойствах,

содержащихся в сигналах получаемых от поровых флюидов, были разработаны методики

определения типа, а в ряде случаев и количественной характеристики углеводородов. 

Типизация углеводородов по ЯМР
Несмотря на изменчивость ЯМР свойств флюидов, положение сигналов от флюидов

разных типов на распределении времени Т2 часто может быть предсказано, или

определено, если в наличии есть данные лабораторных измерений. Это дает важную

информацию для обработки ЯМР и позволяет использовать различные методики

интерпретации. 
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На рисунке 1.14 показаны два метода применяемые при разделении флюидов. В первом

методе, для разделения легких углеводородов (легкая нефть или газ или их смесь) и воды,

используются различные значения TW и механизм оценки вклада Т1. Во втором методе,

для разделения вязкой нефти и воды или газа и жидкости, применяются разные значения

ТЕ в сочетании с механизмом оценки вклада дифузии в условиях четко определенной

величины градиентного магнитного поля.
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Рисунок 1.13 Типичная качественная оценка значений Т1, Т2 и D для различных флюидов и размеров
пор показывает разнообразие и сложности измерений релаксаций Т1 и Т2.
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Метод разности спектров (DSM) является примером механизма оценки вклада Т1 при

котором в интервале записываются два эхо-сигнала, с различными временами

поляризации. Эхо-спад, записанный после короткого времени TW, содержит практически

все сигналы от воды, но сигнал от легких углеводородов - только частично. Однако, в эхо-

спаде, записанном после длинного времени TW, содержатся сигналы и от воды и от легких

углеводородов. Спектр разности, содержащий только углеводородную компоненту,

можно получить вычитанием двух распределений Т2, которые рассчитываются независимо

из двух эхо-спадов, записанных с различным временем поляризации.7-9 

Эхо-спады, которые используются для рассчета распределения Т2, так-же могут

вычитаться друг-из-друга, а полученный при этом эхо-сигнал обрабатывается методом

получившим название анализа временной компоненты или домена (TDA TM) 35. Обработка

(b) Запись с двойным -TE, усиленное D(a) Запись с двойным -TW, усиленнное Т1

1     10          100  1,0001  10                    100                 1,000 Т2, (мсек)

Длинное TW

Короткое TW

Короткое TЕ

Длинное TЕ

Т2, (мсек)

Рисунок 1.14  (a) Из записи с различными временами TW, получают разнообразные распределения T2. В
данном случае, для разделения сигналов от углеводородов и воды используется механизм усиления Т1. (b)
Аналогично, различные распределения T2, могут быть получены при вариации значений ТЕ. В этом примере,
механизм усиления вклада диффузионной составляющей был использован для отделения вязкой нефти от воды,
или газа от жидкостей.
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в TDA начинается с разрешения экспонентных спадов, связанных с легкими

углеводородами (нефть и/или газ), таким образом подтверждается наличие этих флюидов,

а затем проводится оценка их объемов. Процесс TDA дает более точные результаты, чем

DSM. 

Фрагмент каротажной диаграммы, на рисунке 1.15, показывает пример совместной

обработки результатов TDA и DSM. Поскольку собственно анализ ЯМР для рассчета

водонасыщенности не зависит от проводимости пластовой воды, в условиях смешанной

или неизвестной солености он имеет преимущества над анализами со стандартным

сопротивлением. Это свойство метода может быть исключительно полезно при проектах,

связанных с заводнением, для оценки остаточной нефтенасыщенности или при анализе

пропущенных продуктивных интервалов.

Расширение интерпретации водонасыщенности ЯМР

комплексированием с методом сопротивлений
Поскольку у зондов сопротивления глубина исследования значительно больше, модели

оценки водонасыщенности, учитывающие данные метода сопротивлений, являются

предпочтительными при анализе насыщений неизмененной части пласта-коллектора.

Отметим однако, что измерения сопротивления не могут различать капиллярно-связанную

и подвижную воду. Отсутствие контраста в значениях делает сложным выделение

низкоомных продуктивных коллекторов по данным стандартного комплекса ГИС.

Уникальная петрофизическая информация такая как BVI и MCBW, получаемая по данным

ЯМР каротажа, может значительно усилить определение водонасыщенности методом

сопротивлений и существенно помочь при выделении продуктивных коллекторов,

которые дадут безводный продукт.
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Рисунок 1.15 Легкие углеводороды могут выделяться при вычитании эхо-
сигналов, полученных от двух различных времен поляризации. В пятой колонке
показана разница эхо-сигналов, от двух независимых распределений Т2 записанных
при временах поляризации TWS = 1 сек., и TWL = 8 сек. Сигналы от воды при
вычитании уничтожаются полностью, а от УВ - только частично. В шестой колонке
показаны результаты обработки TDA. При выполнении анализа во временном
диапазоне TDA (а не в распределении Т2), может быть количественно определено до
трех независимых составляющих: газ, легкая нефть и вода. Фильтрат бурового
раствора, вытеснивший нефть, попадает в сигнал от подвижной воды, показанный в
шестой колонке.
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При анализе, называемым MRI или «MRIAN TM»,36 ЯМР комплексируется с данными

глубокого сопротивления и оценивает наличие свободной воды в неизмененной зоне, или

возможность того, что интервал с высокой водонасыщенностью может, на самом деле,

дать приток безводных углеводородов. Фрагмент каротажной диаграммы, показанный на

рисунке 1.16 включает результаты обработки MRIAN. 

Примеры использования ЯМР

Пористость и проницаемость по ЯМР
На рисунке 1.17 показаны материалы разреза из Египта с сильно глинистыми

песчаниками. В первую колонку помещены данные проницаемости по MRIL (зеленая

кривая) и по керну (красные звездочки). Во второй колонке – данные пористости по MRIL

(синяя кривая) и по керну (черные звездочки). В этом коллекторе большие различия в

размере зернистости привели к существенной разности в проницаемости коллектора.

Измерения капиллярного давления, выполненные на образцах керна, показали хорошую

корреляцию между размером пор и структурой поровых каналов. Эта корреляция

доказывает, что распределение Т2 сигнала ЯМР, находится в хорошем соответствии с

распределением поровых каналов, при условии, что поровое пространство полностью

заполнено водой.

На рисунке 1.18 показан фрагмент каротажной диаграммы MRIL записанной в массивном

песчаном коллекторе с низкой пористостью (около 10 %) и низкой проницаемостью

(примерно от 1 до 100 мДарси), из бассейна Купер в Австралии (Cooper basin).23 В первой

колонке показаны кривые ГК и кавернометрии, во второй – кривые метода сопротивлений

большой и малой глубинности. В третьей колонке помещена проницаемость рассчитанная

по MRIL и померенная по керну. В четвертой колонке – данные пористости MRIL, а так-же

показания плотностного и нейтронного метода, (рассчитанные для песчаной матрицы) и

пористость по керну. Эта скважина была пробурена на кальций-хлоровом полимерном

растворе (эквивалент 48-kppm натрий-хлора NaCl), 81/2 дюймовым долотом. Запись

данных MRIL была произведена с TW = 12 сек., и TE = 1.2 мсек.
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Рисунок 1.16 Сочетание метода стандартного сопротивления (большой
глубинности) с ЯМР параметрами MCBW, BVI, MFFI и MPHI может
существенно усилить петрофизическую интерпретацию эффективных объемов,
обводненности пласта и проницаемости. Данные анализа MRIAN в пятой
колонке, показывают, что  во всем интервале х160 - х255 значения BVI
практически идентичны интерпретации метода сопротивлений. Из-за высокого
значения BVI из этой зоны, скорее всего будет получен безводный продукт.
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Рисунок 1.17 Данные разреза с глинистыми песчаниками из скважины в Египте,
показывают хорошое совпадение пористости и проницаемости по керну и по MRIL.
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MRIL Perm

Core Perm

Рисунок 1.18 Разрез с низкой пористостью и проницаемостью, из скважины в южной
Австралии, показывает хорошое совпадение лабораторных анализов керна и результатов MRIL.
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Рисунок 1.19 В газоносном коллекторе на пористость MRIL оказывает влияние
углеводородный индекс поровых флюидов. Для рассчета проницаемости необходимо
использовать либо скорректированную за HI пористость MPHI, либо данные другого метода,
например нейтронного каротажа.
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На выбранном для иллюстрации интервале, каротаж показывает относительно чистый

песчаник в верхней части, глинистый песчаник внизу и разделяющий их

преимущественно глинистый прослой. Данные MPHI и пористости по керну хорошо

согласуются между собой. Незначительное занижение MPHI пористости по сравнению с

керном, объясняется присутствием остаточного газа в промытой зоне. Кривая

проницаемости MRIL была рассчитана по модели, разработанной специально для этого

региона и хорошо совпадает с данными полученными по керну.

На рисунке 1.19 показан фрагмент диаграммы записанной в газоносном коллекторе, на

котором сравниваются данные пористости и проницаемости MRIL и керна.23 В первой

колонке показаны кривые ГК и кавернограмма, во второй – сопротивление зондов:

большой и малой глубинности. В третьей колонке сравнивается проницаемость

рассчитанная по MRIL и керну. В четвертой колонке – пористость по керну, MRIL

пористость – MPHI, нейтронная и плотностная пористости (на матрице песчаника), BVI по

модели, разработанной для этого коллектора и суммарный объем воды (CBVWE) по

данным сопротивления. Запись данных MRIL, в этом примере, была произведена с TW =

10 сек., TE = 1.2 мсек., и NE = 500, где NE - число индивидуальных регистраций в эхо-

сигнале.

ГВК (контакт газ-вода) четко выделяется по данным метода сопротивлений на отметке

х220. Сразу над ним отмечается перекрытие диаграмм (показано желтым) нейтронного и

плотностного методов, соответствующее эффекту от газа. Отмечаемое снижение

пористости MRIL, объясняется эффектом от углеводородного индекса газа оставшегося в

зоне проникновения. Получение точных измерений BVI и MFFI является важным для

рассчета проницаемости по модели Коатеса. Кривая MPERM показанная в третьей

колонке, была рассчитана по этой модели, пористость бралась по данным MPHI, а разница

между MPHI и BVI использовалась как MFFI. При таком применении модель Коатеса даст

приемлимые результаты при оценке проницаемости, если на пористость MRIL не влияет

газ. Если пористость MRIL не скорректирована за газ, то проницаемость коллектора будет

занижена, поскольку разница MPHI и BVI будет недооценивать MFFI. В таком случае

использование разницы в значениях нейтронного метода и BVI даст более надежное
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значение MFFI для рассчета проницаемости. Таким образом была рассчитана кривая

PMRI. Это более корректный подход для оценки проницаемости газоносного коллектора и

в данном случае его результаты хорошо совпадают с измерениями выполненными на

керне. Ниже отметки ГВК пористость и проницаемость MRIL хорошо коррелируется с

данными керна.

Анализ низкоомного продуктивного коллектора
Интервал из скважины в Мексиканском заливе уже несколько раз использовался в этой

главе для иллюстрации различных измерений выполненных MRIL (см. рисунки 1.7, 1.9,

1.12, 1.15, и 1.16). Тот-же разрез будет рассмотрен ниже для иллюстрации примера

специального анализа.

Отложения, вскрытые скважиной, представлены массивными средне- и мелкозернистыми

песчаниками, сформированными осадками морского шельфа, отмечается их интенсивная

биотурбация. Проницаемость по воздуху находится в пределах от 1 до 200 миллиДарси, а

пористость померенная по керну составляет от 20 до 30 %. В верхней части (зона А),

коллектор обладает сравнительно высоким сопротивлением (КС около 1 омм), по

сравнению с нижней частью (зона В, где КС примерно 0.5 омм). Коллектор дает легкую

нефть с вязкостью от 1 до 2 сантиПуаз. Скважина пробурена на РВО, стандартный

каротаж показан на рисунке 1.20, а результаты обработки MRIL методами TDA и MRIAN -

на рисунке 1.21.

Оператор был озабочен фактом снижения сопротивления в нижней части коллектора.

Стоял вопрос, связано ли это снижение со структурными особенностями (меньшим

размером зернистости осадка, в этом случае скважина может дать безводный приток), или

с увеличением объема подвижной воды. Возможность обоснованного ответа на этот

вопрос могла так-же иметь значительное влияние на подсчет запасов, различные варианты

заканчивания скважины и решения по будущей разработке. В дополнение, одним из

ключевых моментов, являся тот факт, что реальная добыча, нередко значительно

превышала начальные извлекаемые запасы, основанные на рассчетах с граничным
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значением водонасыщенности в 60%. Если вся вода в зоне вызывающей сомнение,

относиться к несмещаемой, то суммарный нефтенасыщенный интервал мог быть увеличен

с 25 до 70 футов. Соответствующее относительное увеличение суммарной

нефтенасыщенности составило бы порядка 200% и извлекаемые запасы так-же

существенно возросли. Каротаж MRIL был включен в набор методов для решения двух

основных задач:

1. разделить нефтеносные зоны от вероятно водоносных, оценив суммарный объем

связанной воды (BVI) и объем свободных флюидов (MFFI);

2. улучшить оценку извлекаемых запасов, определив работающий интервал;

Данные MRIL записанные в этой скважине должны были включать общую пористость, для

определения глинисто- и капиллярно-связанной воды и объема свободных флюидов. Так-

же должна была применяться запись с двойным временем задержки TW, для выделения и

количественной оценки содержания углеводородов. 

Интерпертация результатов MRIL, показанная на рисунке 1.21, свидетельствует о том, что

снижение сопротивления происходило благодаря изменениям размера зернистости

породы, а не появлению свободной воды. Низкое сопротивление может быть вызвано

двумя типами остаточной воды: связанной с глинистой компонентой (этот объем

обозначается MCBW) и капиллярно-связанной водой (BVI). Измерения глинисто-

связанной воды, по данным MRIL (в третьей колонке) показывают, что во всем интервале

у коллектора весьма низкие значения MCBW. Кривая BVI полученная по данным MRIL (в

седьмой колонке) свидетельствует о наличии цикла с укрупнением зернистости к кровле

(т.к. BVI возрастает с глубиной). Следовательно, возрастание величины BVI и

соответствующее падение сопротивления связаны с изменениями структуры породы.

Совместная интерпретация результатов TDA (в шестой колонке) и TDA/MRIAN (в седьмой

колонке), позволяет сделать вывод о том, что данный коллектор не содержит заметного

количества свободной воды, а вся влага находящаяся в нем – связанная. На основании

этих результатов оператор проперфорировал интервал хх163 – хх234. Начальный приток

безводной нефти составил 2,000 BOPD (баррелей нефти в день), и таким образом

интерпретация MRIL была подтверждена.
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Рисунок 1.20 На основании материалов стандартного каротажа (ПС, сопротивление, плотностной и
нейтронный методы), предполагается, что верхняя часть песчаника (хх160 - хх185), скорее всего, даст
существенно обводненный продукт, и что нижняя часть (хх185-хх257)  водоносна.
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Рисунок 1.21 Данные скважины, показанные на рисунке 1.20, обрабатывались
методиками DSM, TDA и MRIAN. Результаты MRIAN показанные в седьмой колонке,
говорят о том, что и верхний и нижний интервал содержат значительное количество
воды, но эта вода связанная. Следовательно, интервал не может отдавать пластовую
воду. Весь участок характеризуется проницаемостью превышающей 100 мДарси
(вторая колонка). Результаты TDA в шестой колонке показывают наличие нефти в
промытой зоне в пределах 35-45%. По этим данным оператор проперфорировал весь
интевал и получил приток безводной нефти 2,000 BOPD (баррелей нефти в день).
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Отмечается разница в результатах интепретации TDA и TDA/MRIAN представленных на

рисунке 1.21. Данные TDA показывают наличие двух составляющих индекса свободного

флюида – легкой нефти и воды, а TDA/MRIAN говорит о том, что все свободные флюиды

представлены углеводородами. Это кажущееся противоречие объясняется различиями в

глубинах исследования каротажных методов. Насыщения определенные по TDA отражают

ситуацию в зоне проникновения, которая может меряться приборами MRIL. А

насыщенности по совместной интерпетации TDA/MRIAN, определены с учетом показаний

глубокого метода сопротивлений и соответствуют неизмененной части коллектора.

Поскольку эта скважина бурилась на РВО, часть углеводородов была вытеснена из зоны

проникновения фильтратом бурового раствора.

Запись данных прибором MRIL
Уникальная способность каротажного зонда MRIL измерять многочисленные параметры,

необходимые для оценки продуктивности и моделирования коллектора, зависит от

различных ЯМР-измерений от «одного» объема породы, при использовании разных

активаций. При записи многочастотным прибором, таким как MRIL-Prime, набор

различных активаций может быть задействован во время одной СПО (спуско-подъемной

операции).2 Обычно используются активации трех основных классов: общей пористости,

двойного времени TW и двойного времени TE. 

При записи с активацией общей пористости, для получения величины суммарной

пористости MSIG, регистрируются два эхо-сигнала. При записи первого эхо-сигнала

используется TE = 0.6 или 1.2 мсек., и длинное время TW, чтобы достичь полной

поляризации. Этот эхо-сигнал дает «эффективную пористость» MPHI. При записи второго

эхо-сигнала используется TE = 0.6 и короткое время TW, которое позволяет полностью

поляризовать флюиды, находящиеся только в маленьких порах. Регистрация второго эхо-

сигнала дает возможность измерения пористости MCBW, т.е. оценивает вклад

микропористости или пор соответствующих размерам пустот в глинах.16
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Активации двойного времени TW используются, в основном, для выделения легких

углеводородов (газ и легкая нефть). Обычно измерения выполняются с TW = 1 и 8 сек., и

TE = 0.9 или 1.2 мсек. Сигнал от воды содержится в результатах полученных от обоих

активаций, а сигнал легких углеводородов (у которых длинные времена Т1) будет в

значительной степени подавлен в активации с TW = 1 сек. Наличие сигнала в разности

проведенных измерений, является точным индикатором присутствия в разрезе газа или

легкой нефти.37

Активации двойного времени TE, как правило, применяются для выделения высоковязких

нефтей, у которых коэффициэнт диффузии значительно меньше, чем у воды. У этой

активации длинное время TW, а пары значений TE соответственно = 0.9 или 1.2 мсек., и

3.6 или 4.8 мсек. При этом наборе активаций, у флюида с более высоким значением

диффузии (вода) сдвиг спектров будет более заметен на ранних временах, чем у флюида с

низким значением диффузии (вязкая нефть). Наличие спектра в области с минимальным

сдвигом, позволяет выделить коллектора с высоковязкой нефтью.38,39

Влияние неоднородностей ствола скважины на показания MRIL
Как показано на рисунке 1.22, показания зонда MRIL зависят от веществ, находящихся в

серии цилиндрических слоев, толщина каждого из которых около 1 мм. Порода или

флюиды находящиеся за пределами этих слоев не оказывают влияния на измерения, здесь

складывается ситуация, похожая на измерения медицинским MRI. Таким образом, если

прибор MRIL располагается по центру скважины и диаметр каверны меньше диаметра

внутреннего слоя зоны исследования, то зонд будет регистрировать ЯМР сигнал только от

породы. Другими словами, неоднородности ствола скважины и каверны (размывы)

среднего диаметра не оказывают влияния на показания прибора MRIL. На рисунке 1.23

приводится пример выполнения работ зондом MRIL в скважине с неоднородным стволом. 
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Зонд MRIL

Объемы
 исследования

Рисунок 1.22 Глубина исследования прибора MRIL составляет около 18 дюймов (45
см.), при работе на низких частотах и 16 дюймов (41 см.) на высоких, таким образом, в
скважине с диаметром 12 дюймов, неоднородности размером до 2 дюймов не влияют на
регистрируемый сигнал MRIL.
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Рисунок 1.23 Прибор MRIL нередко дает надежную информацию в сильно нарушенной (кавернами) скважине,
когда традиционные методы оказываются бессильны. На этом фрагменте показано, что неоднородность ствола
сказывается на данных нейтронного и плотностного методов, и только MRIL дает правильные измерения
пористости. Кроме того, поскольку ЯМР измерения не зависят от литологии обломочной части, смена известняков
(в верхней части) на песчаники (в нижней) не влияет на точность определения. Для регистрации этих данных,
запись была выполнена прибором MRIL-Prime, со скоростью 24 фута/минуту.
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Диаметры слоев зоны исследования прибора MRIL зависят от операционной частоты и

температуры прибора. Для зонда MRIL наиболее высокое значение операционной частоты

750 кГц, что при температуре в 100�F, соответствует приблизительно глубине

исследования в 16 дюймов. При самой низкой операционной частоте в 600 кГц, и

температуре в 100�F, диаметр исследования приблизительно 18 дюймов. Опубликованы

альбомы палеток, устанавливающих связь величины глубины исследования с

операционной частотой и температурой прибора.40,41

Выводы по применению каротажа ЯМР
Теория и практика работ показывают, что приборы MRIL дают весьма ценный материал

для:

� Выделения продуктивных низкоомных коллекторов;

� Оценки нефте- и/или газоносных пластов со сложной литологией;

� Выделения разрезов с углеводородами высокой- и средней вязкости;

� Изучения коллекторов с низкой пористостью/проницаемостью;

� Определения остаточного нефтенасыщения;

� Оптимизации планирования стимулирования пласта;

В частности, данные метода ЯМР дают следующую важную информацию:

� Пористость не зависящую от литологии матрицы;

� Распределение пористости, дополненное распределением пор по размерам в

водоносных коллекторах;

� Суммарный объем связанной воды и свободых флюидов при наличии

надежного граничного значения T2cutoff;
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� Проницаемость, рассчитанную по данным индекса свободных флюидов и

суммарного объема связанной воды или среднего T2 ;

� Типизацию углеводородов при использовании (1) контраста средних значений

Т1 для воды, газа и/или легких нефтей, (2) контраста значений диффузии для

воды и вязкой нефти и (3) при повышении достоверности рассчетов

водонасыщенности в неизмененной зоне по данным собственно ЯМР;

Несмотря на то, что данная монография рассматривает в основном вопросы ЯМР

каротажа, приборы этого типа так-же применяются в других областях поиска

углеводородов и характеристики коллекторских свойств резервуаров. Сюда включаются

приборы регистрации ЯМР во время бурения (LWD), служащие для раннего

распознования присутствия коллекторов и оценки их свойств; и ЯМР-зонд, встроенный в

прибор описания коллектра (RDTTM) - пластоиспытатель-анализатор флюидов с

расширенными возможностями. Прибор LWD использует тот-же принцип, что и зонд

MRIL, но позволяет получать данные раньше и от непромытых коллекторов.

Пластоиспытатель RDT позволяет получать информацию о свойствах флюидов

находящихся в пластовых условиях. Весь набор данных, полученных ЯМР прибором

LWD, зондом MRIL и ЯМР пластоиспытателем RDT, может быть затем интегрирован в

комплексное описание резервуара в центре по принятию решений, для получения

наиболее достоверных результатов. Примерный процесс схематически представлен на

рисунке 1.24. 
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Оценка коллектора методом ЯМР

Точки
опробывания

MRIL-Prime

RDT

Свойства
флюидов

Выделение
коллектора

Центр
принятия решений
по резервуару

MRIL/LWD

Рисунок 1.24 Прибор регистрации ЯМР на колонне LWD дает информацию о наличии коллекторов непосредственно во
время бурения. Скважинный прибор MRIL-Prime позволяет оценить продуктивность и добывные возможности пласта после
проникновения фильтрат; а опробыватель ЯМР - RDT данные о ЯМР-свойствах поровых флюидов непосредственно в
пластовых условиях.
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ЯМР каротаж основывается на сложных

физических принципах. Измерения скважинного

ядерно-магнитного резонанса и интерпретация

его данных могут быть выполнены только при

условии знания ряда базисных понятий ЯМР. Эти

понятия включают ядерный магнетизм,

поляризацию, время релаксации Т1, поворот

векторов намагниченности, спад свободной

индукции, эхо спинов, время релаксации Т2, а

также цикл CPMG. Настоящая глава посвящена

обсуждению этих понятий. Более полный и

подробный анализ основных вопросов физики

ЯМР дан в работах перечисленных в конце

главы.

Ядерный магнетизм
Ядерно-магнитный резонанс (ЯМР) основан на реакции атомных ядер на действие

магнитных полей. Многие ядра обладают результирующим магнитным моментом, а так-

же вращательным моментом или спином. В присутствии внешнего магнитного поля ядра

прецессируют вокруг вектора направления поля точно так же, как гироскоп прецессирует

вокруг гравитационного поля Земли. При взаимодействии этих вращающихся магнитных

ядер с внешним полем могут возникать измеряемые сигналы.

___________________________________
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Каротаж ЯМР. Принципы и применение
_____________________________________________________________________________________________

____________________________________________________________________________________________
49           Физика  ЯМР                                                                                                                                                                                Глава  2

ЯМР-измерения могут производиться на любом ядре имеющем нечетное количество

протонов или нейтронов или и тех и других, как например, ядро водорода (1H), углерода

(13С) или натрия (23Na). В большинстве ядер находящихся в земных породах ядерный

магнитный сигнал, вызванный внешним магнитным полем, слишком слаб, чтобы его

можно зарегистрировать с помощью скважинного прибора. Однако, водород имеющий

только один протон и ни одного нейтрона, в изобилии встречающийся в воде и

углеводородах, имеет сравнительно большой магнитный момент и создает достаточно

сильный сигнал. По имеющимся данным, на настоящий момент, почти все исследования в

области каротажа визуализации ядерно-магнитного резонанса и изучения пород с

помощью ЯМР основаны на реакции ядра атома водорода. По этой причине иногда слово

«ядерный» опускается в выражении «ядерный магнитный резонанс» и используется

термин «каротаж магнитного резонанса» (MR) или «метод визуализации магнитного

резонанса» (MRI). В этом разделе говорится исключительно о методе протонного (т.е.

водородного) ядерно-магнитного резонанса.

Ядро атома водорода является протоном, то есть крошечной положительно заряженной

частицей, обладающей кинетическим моментом или спином. Вращающийся протон

представляет собой обычный электрический контур, создающий магнитное поле (или

магнитный момент) с двумя полюсами (северным и южным), расположенными вдоль оси

спина. Следовательно, ядро водорода может считаться своего рода магнитом, ось которого

расположена вдоль оси спина ядра, как это показано на рисунке 2.1 (слева). В случае если

имеется множество атомов водорода, но при этом нет магнитного поля, спиновые оси

расположены хаотично, как показано на рисунке 2.2 (справа).

Поляризация
Первое что нужно сделать, чтобы произвести измерения на основе метода ЯМР, это

установить магнитные ядра в соответствии со статическим магнитным полем Bo. При

приложении Bo к магнитному ядру поле создает в нем момент силы который способствует

повороту оси спина ядера в соответствии с Bo.



Halliburton Energy Services
_____________________________________________________________________________________________

_____________________________________________________________________________________________
Глава  2                                                                                                                                                                                    Физика  ЯМР        50

При применении момента силы к вращающемуся объекту ось этого объекта перемещается

перпендикулярно моменту силы в движении, которое называется прецессией, как это

показано на рисунке 2.2 (слева). Таким образом, в случае приложения Bo к магнитному

ядру оно начинает прецессировать вокруг Bo. Частота прецессии ( f ), которая называется

Ларморовской частотой, определяется по следующей формуле:

π2
0Bf �

� (2.1)

где γ означает гиромагнитное отношение, представляющее собой меру силы

ядерного магнетизма. В отношении водорода эта формула будет такой: γ /2π

= 42.58 мГц/Tл. Другие ядра, соответственно, имеют отличные величины γ.1

+

N

S

Рисунок 2.1 В результате унаследованного ядерного магнетизма, ядро водорода (на
рисунке слева) ведет себя как маленький двухполюсный магнит, с моментом,
совпадающим с направлением оси вращения ядра. В случае отсутствия внешнего
(наложенного) магнитного поля, магнитные моменты ядер ориентированы в
пространстве хаотично.
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Как видно из уравнения 2.1, Ларморовская частота определенного ядра пропорциональна

силе статического магнитного поля и гиромагнитному отношению данного ядра. Для

данного Bo различные виды атомов имеют разную Ларморовскую частоту (из-за разности

их гиромагнитных отношений) и, следовательно, отличаются по частотам.

oB
2 �

�
�f

Один спин

z

y

x

�

Bof  Bo

y
x

z Высокая энергия

Низкая энергия

Много спинов

Рисунок 2.2 При наличии внешнего магнитного поля (на рисунке слева), частота прецессии зависит от
гиромагнитной постоянной ядер и силы внешнего поля. Положение осей прецессии магнитных моментов, по
отношению к направлению действия магнитного поля (на рисунке справа) определяет энергетическое
состояние ядер.
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y

x
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При 3 Т1, восстановление 95 %

1816

Время

1-exp(-t/T1)

.4 Кривые релаксации Т1 (поляризации), показывают степень соосности, или
ции как функцию времени, в течении которого семейство протонов подвергалось
ю внешнего поля.
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Иными словами, в ядрах элементов такого типа как водород гиромагнитное отношение

имеет постоянную величину, а Ларморовская частота, согласно уравнению 2.2,

представляет собой функцию силы статического магнитного поля. В случае если сила

магнитного поля зависит от его положения, Ларморовская частота так-же связанная с

ядром является функцией положения ядра. Это наблюдение имеет важное значение для

визуализации магнитного резонанса, измеренией в области медицины и каротажа ЯМР,

применяемого на месторождениях углеводородов.

В обоих случаях – и в области медицинской визуализации резонанса и при каротаже ЯМР,

используется градиентное магнитное поле. Так как сила этого поля зависит от положения,

Ларморовская частота ядра будет представлять собой функцию позиции ядра. В медицине

линейные градиентные поля (по большей части пульсационные) используются в широких

масштабах для оценки распределения жидкостей в трехмерных (3D) постранствах. В

нефтяной промышленности прибор MRIL создает первичное статическое градиентное

поле, сила которого является функцией расстояния от поверхности прибора.2

Следовательно, положение области пространства изучаемой с помощью прибора,

определяется Ларморовской частотой которую генерирует прибор MRIL.

Согласно квантовой механике когда протон подвергается воздействию внешнего

магнитного поля, он переходит в одно из энергетических состояний. Как показано на

рисунке 2.2 (справа), энергетическое состояние отдельного протона зависит от

направления оси прецессии по отношению к внешнему полю. В случае если ось

параллельна Bo, протон находится в низкоэнергетическом состоянии, которое является

наиболее устойчивым. Если же ось прецессии не параллельна Bo, протон находится в

высокоэнергетическом состоянии. Продольное направление обозначается как Bo.

В случае если вокруг Bo прецессирует большое количество вращающихся протонов, как

показано на рисунке 2.3, параллельно Bo прецессирует большее количество спинов,

нежели не параллельно. Разница между количеством протонов, расположенных

параллельно и количеством протонов, расположенных не параллельно к полю Bo,
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приводит к объемной магнетизации Mo которая и дает сигнал, измеряемый приборами

NMR и MRI.

Макроскопическая магнетизация Mo определяется как результирующий магнитный

момент  конкретного объема. Для энного количества ядер на удельный объем,

магнетизация определяется по закону Кюри как : 3

02

22

0 k)4(3
)1(h B

T
IINM �
�

��

�

�

где
k = постоянная Больцмана
T = абсолютная температура в градусах Кельвина
h = постоянная Планка 
I = квантованное число спинов ядра

Наблюдаемое Mo согласно уравнению 2.2, прямо пропорционально количеству протонов,

величине применяемого магнитного поля и обратно пропорционально абсолютной

температуре.

После того как протоны «выстроились» в статическом магнитном поле, считается, что они

поляризованы. Поляризация происходит постепенно и её степень возрастает с постоянной

времени, которая является временем продольной релаксации Т1 :

)1()( 1
0

T
t

z eMtM
�

�� (2.3)

где

t = время, в течении которого на протоны воздействует магнитное поле B0;

Mz(t) = величина магнетизации на время t, когда направление поля B0

принимает положение совпадающее с осью z;

M0 = окончательная и максимальная величина магнетизации данного поля;

Т1 означает период, в течение которого магнетизация достигает 63% своего

окончательного значения, причем трехкратное Т1 означает время, за которое достигается

95% поляризации. Кривая релаксации или поляризации Т1 показана на рисуноке 2.4.
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Различные флюиды такие как вода, нефть и газ имеют, соответственно, различные

времена релаксации Т1.

Поворот вектора намагниченности и спад свободной индукции
Следующий шаг который необходимо сделать во время измерений ядерно-магнитного

резонанса, состоит в переводе магнетизации из продольного направления в поперечную

плоскость. Этот перевод осуществляется с помощью осциллирующего магнитного поля

(B1), перпендикулярного статическому полю Bo. Для достижения более эффективного

изменения направления частота B1 должна быть равна Ларморовской частоте протонов по

отношению к Bo.

Процесс взаимодействия осциллирующего магнитного поля с протонами, показан на

рисунке 2.5. С точки зрения квантовой механики, если протон находится в

низкоэнергетическом состоянии, то он может поглощать энергию которую дает B1 и

переходить в высокоэнергетическое состояние. Применение B1 способствует также тому,

что фазы протонов прецессируют по отношении друг к другу. Такое изменение состояния

энергии, а так-же прецессия фазы, происходящие при воздействии B1, называется ядерно-

магнитным резонансом.

На макроскопическом уровне этот резонанс выражается в изменении направления

магнетизации прецессирующей вокруг Bo при Ларморовской частоте. Угол, при котором

изменяется направление магнетизация, определяется по формуле : 5,6 

��� 1B� (2.4)

где

� = угол поворота в градусах

B1 = амплитуда осциллирующего поля

� = время, в течении которого прилагалось осциллирующее поле

Таким образом, угол изменения направления пропорционален произведению B1τ,

отражающему энергию которую B1 придает спиновой системе протона, увеличивая при
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этом силу осциллирующего поля или увеличивая время, в течение которого

осциллирующее поле применяется и увеличивая угол изменения направления. Отношение

изменения направление-угол (уравнение 2.4) показано на рисунке 2.6.

Поле B1 используемое в промысловой геофизике представляет собой пульсационное

осциллирующее магнитное поле. Термины угол-импульс, такие как импульс π (или

стовосьмидесятиградусный импульс) и импульс π/2 (или девяностоградусный импульс),

относятся к углу, на который осуществляется изменение направления магнетизации с

помощью B1.

В случае если прибор ЯМР использует импульс 90° поля B1 воздействующий на семейство

протонов поляризованных прибором, последние прецессируют в поперечных плоскостях

(относительно Bo). В макроскопическом отношении магнетизация при этом меняет

направление на 90° и, затем, прецессирует в поперечном плане.

В случае если поле B1 выключено, протоны начинают смещаться по фазе или терять

фазовую когерентность, то есть, протоны в состоянии прецессии больше на находятся в

фазе друг с другом. Следовательно, если это дефазирование продолжится, общая

магнетизация снизится. В такой ситуации катушка приемника, измеряющая магнетизацию

в поперечном направлении обнаружит сигнал затухания (рисунок 2.7). Это затухание, как

правило, является экспоненциальным и называется спадом свободной индукции (ССИ

FID). Константа времени спада свободной индукции (T2*) очень коротка – всего лишь

несколько десятков микросекунд. Спад свободной индукции вызван неоднородностью

магнитного поля возникающего под действием градиента поля и некоторых процессов на

молекулярном уровне, проходящих в исследуемом объеме. По причине неоднородности

поля Bo расположенные в разных точках протоны начинают прецессировать с различными

Ларморовскими частотами, таким образом ускоряя процесс спада.
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Рисунок 2.5 Для эффективного взаимодействия с протонами (на рисунке слева), осциллирующее магнитное поле В1
должно иметь существенную компоненту, перпендикулярную статичному полю В0 и частоту f, равную Ларморовской
частоте статичного поля f0. В этом случае (на рисунке справа), протоны будут прецессировать синфазно и смогут
поглощать энергию осциллирующего поля, переходя при этом в высокоэнергетичное состояние. Таким образом
происходит ядерно-магнитный резонанс ЯМР.
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Рисунок 2.6
Угол направления манетизации �  зависит от силы осциллирующего поля
В1 и  от времени �, в течении которого это поля действовало
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90° импульс

90° импульс

ССИ
Время

Рисунок 2.7 После подачи 90�-градусного импульса, фаза
семейства протонов смещается и появляется возможность
регистрации сигнала спада свободной индукции (ССИ)

0 � 2�

ССИ Эхо

90° 180°

Время (сек)

Время (сек)

1 2 3 4 5

Рисунок 2.8 (1) Для создания эхо-сигналов спина генерируется 90° импульс В1. (2) После прекращения 90°
импульса начинается дефазирование. (3) Через промежуток времени � подается 180° импульс В1 разворачивающий
углы фаз и, таким образом, возбуждающий перефазирование. (4) Происходит перефазирование. (5) Смена фаз
завершается полностью и на отметке времени 2� генерируется сигнал (эхо-сигнал спина) который может быть
измерен.
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Регистрация эхо-сигнала спина
Дефазирование возникающее в результате неоднородности статического магнитного поля

Bo является обратимым. Векторы магнетизации протонов в поперечных плоскостях могут

поменять фазы при применении 180° импульсов поля Bo. В случае если поперечный

вектор магнетизации имеет фазовый угол α, применение импульса 180° поля Bo приведет

к изменению фазового угла который будет обозначаться –α. В сущности, фазовый порядок

векторов поперечной магнетизации протовоположен и более медленные вектора

(совпадающие с направлением фазы) оказываются впереди более быстрых. Когда быстрые

векторы обгоняют более медленные происходит смена фазы и возникает сигнал

регистрируемый обмоткой приемника. Этот сигнал называется эхо-сигналом спина.7 Если

время τ (но не то время, что указано в уравнении 2.4) находится между импульсом 90°

поля B1 и 180° поля B1, то же самое время τ будет проходит между импульсом 180° поля

B1 и пиком эхо спина. То есть время изменения фазы равно времени дефазировки, а пик

эхо-сигнала спина происходит во времени 2 τ, которое обозначается как TE. Образование

эхо спина проиллюстрировано на рисунке 2.8.

Несмотря на то, что эхо спина затухает очень быстро, стовосьмидесятиградусные

импульсы могут возникать неоднократно изменяя фазу магнетизации и порождая серию

эхо-сигналов. Таким образом может быть зарегистрирован целый цикл эхо-сигналов

спина, как это показано на рисунке 2.9. Эхо формируется между каждой парой

стовосьмидесятиградусных импульсов. Интервал между эхо-спадами представляет собой

отрезок времени между соседними сигналами. Количество импульсов в серии цикла

составляет NE. Целый последовательный ряд импульсов, то есть 90° импульс за которым

следует серия 180° импульсов называется последовательность CPMG по имени их

изобретателей: Карра, Пурселла, Мейбума и Гилла. 

Последовательность импульсов Карр-Пурселл-Мейбум-Гилла снимает дефазировку

возникающую из-за неоднородности поля B0; даже допуская, что принципом диффузии

можно принебречь, остается, дефазировка вызванная взаимодействием между молекулами

и диффузией, которая является необратимой. Как только происходит это необратимое

дефазирование протоны не могут быть польностью ре-ориентированы, поэтому серия эхо
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спина CPMG начинает затухать. Как показано на рисунке 2.10, скважинный прибор

ядерно-магнитного резонанса меряет амплитуду эхо спина в последовательности CPMG с

целью регистрации спада поперечной магнетизации и, следовательно, необратимого

дефазирования. 

Константа времени спада поперечной магнетизации называется временем поперечной

релаксации и обозначается как Т2. Амплитуда серии эхо спина при времени t, являющаяся

амплитудой поперечной магнетизации Mx(t), вычисляется по9

2
0)( T

t

xx eMtM
�

� (2.5)

где Mоx является величиной поперечной магнетизации при t = 0 (время, при

котором заканчивается 90° импульс). Спад Т2 от пласта содержит большую часть

петрофизической информации получаемой методом скважинного ЯМР и, следовательно,

представляет собой основную цель измерений. Как уже было сказано в начале Главы 1

необработанные данные, полученные в результате каротажа ядерно-магнитного резонанса

относятся к сериям эхо-сигналов спинов.

Времена при измерении ЯМР
По окончании периода времени в несколько раз большего, чем Т2, спад поперечной

магнетизации, в основном, завершен и дальнейшее изменение фаз уже невозможно. За

время цикла CPMG 90° импульс переориентирует протоны с тем, чтобы больше не

происходило продольной поляризации (при этом 180° импульсы подавляют рост новой

продольной поляризации). Отсюда следует, что в конце серии импульсов CPMG протоны

оказываются ориентированы случайно. Для того, чтобы начать новую серию импульсов

CPMG они должны быть снова поляризованы. Таким образом, между окончанием одной

серии измерений и началом следующей, обязательно должно быть время задержки, в

течение которого происходит поляризация. 
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Рисунок 2.9 Для регистрации эхо-сигнала спина генерируется последовательность импульсов
CPMG которая состоит из 90° импульса В1 за которым следует серия 180° импульсов. Эхо-
сигналы уменьшающейся амплитуды, следуют за 180°-ми импульсами В1 .
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Рисунок 2.10
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На рисунке 2.11 показана типичная схема положения времен для измерений ядерно-

магнитного резонанса. В верхней части рисунка находятся две серии импульсов CPMG,

каждая из которых состоит из одного 90° импульса В1, за которым следует серия 180°

импульсов. В нижней части рисунка показан процесс поляризации (кривые релаксации

Т1), а так-же серии эхо-сигналов (кривые релаксации Т2), относящиеся к двум сериям

CPMG. Время поляризации (TW время задержки), интервалы между эхо-сигналами (ТЕ) и

количество эхо-сигналов (NE) могут контролироваться вручную. 

Для того чтобы измерить величину M0, в результате регистации эхо-сигналов спина

определяется амплитуда серии эхо-спада при t = 0. А чтобы избежать недооценки М0

необходима полная или почти полная (95%) поляризация. Для достижения 95%

поляризации время задержки TW должно в три раза превосходить время Т1.

При сокращении времени между импульсами (ТЕ), эхо-сигналы будут возникать и

улавливаться раньше и быстрей, причем соотношение сигнал-шум увеличивается в связи с

большей плотностью начальных измерений. При увеличении числа сигналов (NE), эхо-

спады будут возникать и регистрироваться гораздо дольше, но при этом требуется больше

мощности поля В1.

Серии измерений CPMG всегда проводятся попарно. После получения одной серии

необходимо получить вторую серию с таким сдвигом фазы импульса передатчика,

который позволит придать эхо спина отрицательную амплитуду. Вторая серия затем

вычисляется из первой для того чтобы создать противофазную пару. В этом случае

сохранияется сигнал и отфильтровывается низкочастотный электронный шум.



Каротаж ЯМР. Принципы и применение
_____________________________________________________________________________________________

____________________________________________________________________________________________
63           Физика  ЯМР                                                                                                                                                                                Глава  2

M 0

RF импульсы

B1

Время (сек)

Спад эхо-сигнала

TW Время (сек)

Поляризация

TE

TЕ

Рисунок 2.11
Диаграмма времен измерений ЯМР показывает (верхняя часть рисунка) CPMG цикл,
кривые поляризации (релаксации Т1) и записи спадов эхо-сигналов (нижняя часть).
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Петрофизическая информация такая как

пористость, распределение пор по размерам,

количество связанной воды и проницаемость,

может быть получена при измерении релаксации

ЯМР-сигналов. Для правильного применения

метода ЯМР при геофизической интерпретации,

исключительно важным является понимание

природы релаксации сигнала в поровых

флюидах. В этой главе рассматриваются вопросы

связанные с физикой ЯМР и некоторые модели,

используемые для получения коллекторских

свойств при ЯМР-измерениях.

Механизмы релаксации ЯМР поровых флюидов
Продольная (T1) и поперечная (T2) релаксации вызываются магнитными

взаимодействиями между протонами. С атомарной точки зрения релаксация T1

происходит когда прецессирующая система протона передает энергию ее окружению.

Протон-источник релаксирует до достижения своего низкоэнергетического состояния в

котором он прецессирует с направлением B0. Этот переход так-же влияет и на релаксацию

T2. В дополнение к этому, в релаксацию T2 вносит вклад смещение по фазе, однако этот

процесс происходит без обмена энергией с окружающей средой. Таким образом,

поперечная релаксация всегда происходит быстрее, чем продольная; следовательно, время

T2 всегда меньше или равно T1.1 В общем случае:

� Для протонов в твердой фазе, T2 значительно меньше, чем T1; 2

_____________________
  Глава  3

Основы 
петрофизики 

ЯМР 
_____________________
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� Для протонов в пластовых флюидах,

- когда флюид находится в однородном постоянном магнитном поле,

время T2 примерно равно T1;

- Когда флюид находиться в градиентном поле и для измерения

используется цикл CPMG, время T2 меньше чем T1. Разница времен

зависит в основном от градиента поля, времени между эхо-сигналами и

диффузивностью флюида; 3

� Когда смачивающий флюид заполняет пористую среду, например породу, оба

времени и T2 и T1, стремительно уменьшаются, а механизмы релаксации

протонов принципиально отличаются от аналогичных процессов в твердой или

жидкой фазах;

В релаксации флюидов, находящихся в поровом пространстве породы участвуют три

процесса:

� Объемные процессы флюидов влияющие на релаксацию T1 и T2 ;

� Поверхностная релаксация влияющая на релаксацию T1 и T2 ;

� Диффузия, при наличии градиентов магнитного поля, которая влияет только на

релаксацию T2;

Все три процесса действуют одновременно и, следовательно, времена T1 и T2 поровых

флюидов выражаются как: 4

diffusionsurfacebulk TTTT 2222

1111
���

(3.1)

surfacebulk TTT 111

111
�� (3.2)

где

T2 = время поперечной релаксации порового флюида, померянное циклом CPMG;

T2bulk = время T2 релаксации порового флюида, соответствующее времени

релаксации, померенному в резервуаре настолько большом, что влиянием

собственно резервуара можно принебречь;
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T2surface = время T2 релаксации порового флюида связанное с релаксацией на

поверхности;

T2diffusion = время T2 релаксации порового флюида вызванной диффузией в

градиентном магнитном поле;

T1 = измеренное время продольной релаксации порового флюида;

T1bulk = время T1 релаксации порового флюида, соответствующее времени

померенному в резервуаре настолько большом, что влиянием собственно

резервуара можно принебречь;

T1surface = время T1 релаксации порового флюида связанное с релаксацией на

поверхности;

Относительный вклад каждого из механизмов, зависит от типа флюида в порах (вода,

нефть или газ), размера пор, силы поверхностной релаксации и смачиваемости

поверхности породы. В общем случае для гидрофильного коллектора:

� Для рассола время T2 определяется, в основном, T2surface;

� Для высоковязкой нефти на время T2, основной вклад оказывает T2bulk ;

� Для нефтей средней вязкости и легких разностей T2 - комбинация T2bulk и

T2diffusion; и так-же зависит от величины вязкости;

� Для газа время T2 определяется, в основном, T2diffusion;

Объемная релаксация

Объемная релаксация является свойством собственной релаксации флюида и зависит от

его физических свойств таких как вязкость и химический состав. Она может быть

измерена, если флюид помещен в достаточно большой резервуар (таким образом,

исключается поверхностная релаксация) и затем его подвергают воздействию

однородного магнитного поля и серии импульсов CPMG. На объемную релаксацию

флюида так-же влияют остальные параметры окружающей среды такие как температура и

давление. Времена объемной релаксации (в секундах) могут быть рассчитаны по

следующим формулам:
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Вода 5
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�
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��
�

�
�

�298
3bulk1

KTT (3.3)

bulk1bulk2 TT � (3.4)

Газ 6

�
�
�

�
�
�
�

�
�� 17.1

4
bulk1 105.2

K

g

T
T

�
(3.5)

bulk1bulk2 TT � (3.6)

«Мертвая» нефть 7

�

KTT 00713.0bulk1 � (3.7)

bulk1bulk2 TT � (3.8)

где

TK = температура (�K)
� = вязкость флюида (сантиПуаз)
�g = плотность газа(г/см3)

Поверхностная релаксация

Поверхностная релаксация происходит на границе раздела между жидкостью и твердым

телом, т.е. на поверхности зерен породы. Теоретические исследования показали, что при

условии ограниченности быстрой диффузии† доминирующая составляющая

поверхностной релаксации T1 и T2 рассчитывается:

poresurface V
S

T
�
�

�
�
�

�
� 2

2

1
� (3.9)

poresurface V
S

T
�
�

�
�
�

�
� 1

1

1
� (3.10)

                                                          
† Ограничение быстрой диффузии постулирует, что поры достаточно малы, а механизмы поверхностной
релаксации достаточно медленны, чтобы типичная молекула пересекла пространство поры несколько раз,
прежде чем она полностью релаксирует.
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где

�2 = поверхностная релаксивность T2 (сила релаксации T2 на поверхностях зерен)

�1 = поверхностная релаксивность T1 (сила релаксации T1 на поверхностях зерен)

(S/V)pore  = отношение величины поверхности пор к объему флюидов (удельная

поверхность)

Для простых форм (S/V) связано с размером пор. Например, для сферы отношение

величины поверхности к объему равно 3/r , где r - радиус сферы.

Поверхностная релаксация зависит от минералогического состава. Например, на

карбонатных поверхностях она слабее, чем на кварце.10 Оценка величины поверхностной

релаксации производиться в лабораторных условиях. Флюиды, контролируемые

поверхностной релаксацией, характеризуются временами T2 не зависящими от

температуры и давления.11 Поэтому лабораторные измерения, выполненные при

атмосферных условиях, часто используют при калибровке формул для рассчета таких

петрофизических параметров, как проницаемость и связанная вода. Поскольку процессы

измерения-записи на лабораторном оборудовании идентичны процессам в скважинном

приборе, модели разработанные на их основе, могут непосредственно применяться для

обработки скважинных данных ЯМР, значительно упрощая процесс интерпретации.

Релаксация вызванная диффузией

Газ, легкие нефти и некоторые нефти средней вязкости обладают значительной

релаксацией, связанной с диффузией, при условии, что они находятся в градиентном поле

и подвержены водействию цикла CPMG с длинным временем между эхо-сигналами. Для

таких флюидов, время релаксации T2diffusion постоянно связано с механизмом диффузии и

становиться важным инструментом для их распознования. Когда в статическом

магнитном поле существует значительный градиент, диффузия молекул вызывает

дополнительное фазовое смещение и, следовательно, увеличивает скорость релаксации T2

(1/ T2). Это смещение вызывается молекулами перешедшими в область в которой сила
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магнитного поля отлична и, соответственно, отличны скорости прецессии. Диффузия не

сказывается на скорости релаксации сигнала T1 (1/T1).

Скорость релаксации связанной с диффузией (1/T2diffusion) рассчитывается по: 3

� �2

2 12
1 GTED

T diffusion

�
� (3.11)

где

D = коэффициэнт молекулярной диффузии;

� = гиромагнитная частота протона;

G = градиент магнитного поля (Гаусс/см);

TE = время между эхо-сигналами, используемое в цикле CPMG;

Как и при объемной релаксации, физические свойства такие как вязкость и молекулярный

состав контролируют коэффициэнт диффузии. На неё так-же оказывают влияние

параметры окружающей среды – температура и давление. У воды, при комнатной

температуре, коэффициэнт около 2х10–5 см2/сек. Коэффициэнты диффузии газа, нефти и

воды рассчитываются по следующим формулам:

Газ 6

scmTD
g

K
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Вода 12
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�
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��
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�
(3.14)

Как показано в уравнениях 3.12 – 3.14, коэффициэнты диффузии газа, нефти и воды

возрастают с возрастанием температуры (т.к. при увеличении температуры снижается

вязкость � ). Коэффициэнт диффузии газа снижается при возрастании давления,

поскольку при этом возрастает его плотность. Коэффициэнты диффузии нефтей меняются
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в широких пределах, т.к. нефти весьма разнятся по молекулярному составу и,

следовательно, по вязкости.

При записи каротажа прибором ЯМР три фактора контролируют силу градиента

магнитного поля G в породе. Первый из них является функцией конструкции скважинного

прибора и его конфигурации (т.е. размера и несущей частоты). Второй позволяет

учитывать изменения свойств окружающей среды, например температуры. Эти два

параметра берутся из опубликованных, для каждого прибора ЯМР, палеток градиентов.

Возможность применения методик оценки диффузии, для типизации углеводородов,

обеспечивается высокой степенью охарактеризованности полевых градиентов. Третий

фактор связан с градиентами наведенными приложенным полем В0. Эти градиенты

возникают при наличии разности в магнитной восприимчивости зерен породы и поровых

флюидов. 13 Они известны как внутренние градиенты и могут приводить к  дальнейшему

уменьшению времен релаксации.

Движение молекул в смачивающих жидкостях часто затруднено на границе между

зернами породы и флюидами и/или натяжением на поверхности раздела между

флюидами. Из-за этих ограничений, коэффициэнт диффузии флюида в породе отличается

от объемного коэффициэнта диффузии флюида при одинаковых температуре и давлении.6

Эффекты диффузии, для большинства жидкостей, становятся заметными на коротких

временах между эхо-сигналами; исключение представляет газ, у которого диффузия

проявляется даже при небольших временах. Время между эхо-сигналами является

параметром цикла CPMG, который может задаваться инженером-каротажником при

планировании работ методом ЯМР. При необходимости, с помощью выбора

соответствующего времени между эхо-сигналами, эффекты от диффузии могут быть

усилены или минимизированы – в зависимости от требований методики интерпретации.

Объединение уравнений 3.3, 3.4 и 3.1, 3.2, приводит к:
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S
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�
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� (3.16)

На рисунке 3.1 показаны основные механизмы релаксации.

Много-экспонентный спад
Коллектора, как правило, содержат набор пор разного размера и нередко насыщены более

чем одним типом флюидов. Поэтому сигнал эхо-спина (измерения поперечной

V
S

TT 1
1bulk1

11
���

Высокая скорость релаксации
фюидов на поверхности

Низкая скорость объемной
релаксации у флюидов

12

2TE)G(D1 ��
���

�
�

V
S1

2
2bulk2(cpmg) TT

Основные механизмы релаксации
поровых флюидов

•   Объемная релаксация для Т1 и Т2

Диффузия

•   Поверхностная релаксация для Т1 и Т2

•   Диффузионная релаксация для Т2

Рисунок. 3.1 Релаксация поровых флюидов в результате объемного, поверхностного и диффузионного
механизмов.
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магнетизации) записанный при цикле CPMG не спадает с единым значением T2, а

представлен распределением T2, которое описывается уравнением 3.17. 14

� � � ��
�

� iT
t

i eMtM 20 (3.17)

где

M(t) = магнетизация, измеренная во время t;

Mi(0) = собственная магнетизация ith - компоненты релаксации;

T2i = постоянная спада для ith - компоненты поперечной релаксации;

Суммирование производится по всему образцу т.е. складываются все поры и различные

типы флюидов.

На рисунке 3.2 показаны много-экспонентные спады характерные для пор различного

размера заполненных одной смачивающей жидкой фазой.

T2

T2

T2

T2

T 2

tim e

tim e

tim e

tim e

tim e

Рисунок. 3.2 У полностью воднасыщенных (100%) одиночных пор (сверху слева) одно значение
времени  T2 (верх, центр) зависящее от размера поры, соответственно, спад эхо-сигналов (верх, справа)
описывается одной эскпонентой которая так-же зависит от размера поры. У набора различных пор
(снизу, слева), так-же воднасыщенных на 100%, многочисленные значения T2 (низ, центр) зависящие от
размера пор и, соответственно, спад эхо-сигналов (низ, справа), описывается  много-экспонентной
зависимостью определяемой размерами пор.
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При использовании коротких времен между эхо-сигналами и, при условии, что коллектор

заполнен только водой, поверхностная релаксация становиться доминирующей. В таком

случае, T2 прямо пропорционален размеру пор. Если все поры предполагаются одинаковой

формы, то самые большие из них (левая колонка на рисунке 3.2) имеют маленькие

значения S/V и, следовательно, самое длинное T2. Поры среднего размера имеют

пониженные S/V, что приводит к средним значениям T2. У самых маленьких пор наиболее

высокое отношение S/V и наиболее короткие времена T2. Для единичной поры сигнал

магнетизации спадает по экспоненте и его амплитуда описывается: 15

� �
t

V
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eMtM
�
�

�
�
�

�
�

�

2

0

�

(3.18)

Величина M0 пропорциональна объему флюида в поре. Если рассматривать полное

распределение различных пор полностью насыщенных водой (нижняя левая часть рисунка

3.2), то они обладают набором значений T2 (нижняя центральная часть рисунка 3.2).

Соответствующая амплитуда сигнала представляет собой сумму амплитуд сигналов

поступающих от флюидов в отдельных порах (нижняя правая часть рисунка 3.2) и

определяется:
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(3.19)

где (S/V)i отношение поверхности к объему (удельная поверхность) для i - поры.

Представляется очевидным что:

� � iMM 00 �� (3.20)

Если известно значение M100%(0) (измеренная магнетизация для 100% объема воды, при

том-же объеме исследования), то M(0) и M0i могут быть откалиброваны на пористость:
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где

� = калиброванная пористость породы;

�i = калиброванная пористость породы связанная с порами ith – размера (так-же

известная под названием инкрементной пористости);
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Таким образом, распределение T2 (представленное в форме амплитуд M0i связанных с

постоянными T2i) откалибровано к распределению пористости (индивидуальным порам �i

с постоянными T2i).

В порах частично заполненных водой, т.е. содержащих дополнительно некоторое

количество нефти или газа, сигнал может быть описан в виде:

� � gasoili T
t

gas
T

t

oil

t
V
S

i eMeMeMtM 22
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�
�
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�
�

����
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(3.22)

где

Moil = магнетизация, наведенная в поре протонами нефти;

Mgas = магнетизация, наведенная в поре протонами газа;

T2oil = время нефти T2, померенное циклом CPMG;

T2gas = время газа T2, померенное циклом CPMG;

В уравнении 3.22 предполагается что порода – гидрофильна и для нефти и газа спады эхо-

сигнало от спина, могут быть аппроксимированы моно-экспонентной зависимостью,

которая будет представлять результат объемной и диффузионной релаксации

несмачивающих флюидов. На самом деле, многие «сырые» нефти состоят из набора

многочисленных углеводородов и, следовательно, должны иметь сложный спектр спада

который обязан содержать много-экспонентную сумму. Более того, если нефть или газ,

занимают часть порового пространства то, соответственно, уменьшается объем

занимаемый водой. Поскольку объем воды уменьшается, а площадь поверхности пор

остается неизмененной, то отношение V/S так-же уменьшается. А т.к. сигнал T2 от водной

фазы пропорционально связан с V/S, он так-же уменьшается. Следовательно, если

присутствуют несмачивающие жидкости то спектр T2 больше не является отражением

распределения пор по размеру поскольку он содержит сигнал объемной релаксации от

несмачивающей жидкости. Поры содержащие такие жидкости появляются на спектре

распределения либо в областях более ранних времен, либо, если приповерхностный слой

очень тонок, не появляются вообще. Пористость в таких коллекторах рассчитывается

исходя из объемной релаксации, т.е. хотя распределение сигнала нарушается, измеренная

пористость остается без изменений.
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Поскольку на практике учесть вклад индивидуальных пор сложно, все поры с примерно

равной величиной удельной поверхности, содержащие несмачивающие флюиды и

имеющие сходные значения Т2, объединяются вместе. После такой группировки для

решения уравнений магнетизации, получают поддающееся обработке количество

составляющих.

Эмпирический подбор эхо-сигналов под распределение Т2

Одним из самых важных шагов при обрабоке данных ЯМР, является определение

распределения T2 которое создает наблюдаемую магнетизацию. Этот процесс называется

эмпирическим подбором или картированием и является математической инверсией. На

рисунке 3.3 показаны исходные данные (эхо-сигналы) и результат (распределение T2)

процесса картирования. Система уравнений 3.23 описывает отдельные эхо-сигналы.

Обычно распределение T2 в породе – непрерывная функция. Однако, для упрощения

процесса эмпирического подбора эхо-сигналов используется много-экспонентная модель

в которой предполагается, что распределение T2 состоит из m – числа отдельных времен

релаксации T2i с соответствующими компонентами �i. Инкременты значений T2i задаются

заранее (например 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 мсек.,….) и процесс

картирования концентрируется на рассчете составляющих пористости в каждом из

распределений. 
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(3.23)

где

TE)( iit � , i = 1, … n, время записи i-ой компоненты ;
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Уравнение 3.23 является системой из n – линейных уравнений с m – неизвестными �1,….�m,

где n значительно больше, чем m. Обычно m, число значений T2 или инкрементов,

находится между 2 – для некоторых каротажных данных, до 50 в высококачественных

лабораторных измерениях. Число эхо-сигналов n варьируется от 10 для измерений с

частичной поляризацией связанной воды, до нескольких тысяч, в лабораторных анализах.

Существуют многочисленные методы инверсии позволяющие получить наилучшее

совпадение для �i.16 Решение уравнения 3.23 осложняется тем фактом, что �i должно быть

равно или больше нуля и тем, что совпадение с множеством экспонент неустойчиво.

Следовательно, инверсия для уравнения 3.23 должна включать процесс регуляризации для

стабильности решения. Таким образом, обратный процесс будет зависеть от измеренных

данных эхо-сигналов и выбранной регуляризации, т.е. выбранного для инверсии

«сглаживания». Регуляризация, по крайней мере частично, контролируется отношением

сигнал/шум в данных. В следствии этого, набор значений �i не является единственно

возможным (т.е. распределения различной формы могут одинаково хорошо подходить для

кривой спада); поэтому нужно быть особенно внимательным при детальной

интерпретации распределения. Несмотря на это, в общем случае, площадь области под

кривой (эта область соответствует пористости) и положение инкрементов наиболее

крупных пор считаются определенными достаточно точно.

P(i)

t

Полевые данные:  эхо-сигнал

M(t)

Результат обработки: распределение T2

T2

Рисунок. 3.3 При помощи подборки экспоненты эхо-сигнал
(амплитуда эхо-сигнала как функция времени) конвертируется в
распределение T2 (пористость как функция T2).
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Распределение пор по размерам
Как описывалось ранее, в случае если гидрофильная порода полностью заполнена водой,

величина T2 от единичной поры пропорциональна её удельной поверхности, которая

является мерой размера поры. Таким образом, наблюдаемое распределение сигнала T2,

является отображением распределения порового пространства породы. На рисунке 3.4

показано сравнение распределений T2 водонасыщенной породы и размера поровых

каналов, померенного ртутным методом. Данные ртутного метода при инкрементном

насыщении трудно оценить количественно, но в целом размер поровых каналов

пропорционален размеру пор которые они соединяют. Как видно на левой половине

рисунка, после сдвига данных ртутной порометрии, связанного с такими факторами как

поверхностная релаксация, распределение T2 удивительно хорошо совпадает с данными

размера поровых каналов. Хотя распределения ЯМР и порометрии нередко должны

«сдвигаться» - чтобы добиться лучшего совпадения, они все-же отражают разные

характеристики породы. Их хорошее «количественное» совпадение объясняется тесной

корреляцией этих параметров, наблюдаемой в осадочных породах.

Картирование, как показано на рисунке 3.4, приводит к определению эффективной

релаксивности (�e). Понятие эффективной релаксивности вводится чтобы учитывать тот

факт, что ЯМР работает с размером «тела» поры, а ртутное давление насыщения, в

основном, - с размером поровых каналов. Следовательно, величина �e пропорциональна

результату собственно поверхностной релаксивности � и величине отношения размера

поровых каналов к размеру поры. 17

На рисунке 3.5, для трех литологий, показано сравнение распределений времен спада и

распределений пор по размеру. Релаксация в песчаниках, как правило, выше чем в

карбонатах, что заметно на данных образцов приведенных в примере. Распределение T2 по

данным ЯМР дает хорошую оценку распределения пористости, при условии, что порода

на 100% насыщена водой, как показано на примерах песчаника и карбонатов на рисунке

3.6. Даже в случае присутствия углеводородов BVI позволяет отделить мелко-зернистые

песчаники от крупно-зернистых. Эта информация является весьма полезной при оценке

качества коллектора или определении обстановки его осадконакопления. 
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Рисунок. 3.4  После сдвига обусловленного эффективной
поверхностной релаксацией, распределение пор по размерам,
полученное по данным ртутной порометрии, практически
совпадает с распределением Т2 по данным ЯМР

Пористость = 17.1 %
Проницаемость Kair = 1.87 мД
Остаточная вода Swir = 80.8 %

Пористость = 24.4 %
Проницаемость Kair = 45.1 мД
Остаточная вода Swir = 58.3 %

Пористость = 11.8 %
Проницаемость Kair = 414 мД
Остаточная вода Swir = 29.6 %

Пористость = 27.8 %
Проницаемость Kair = 2640 мД
Остаточная вода Swir = 21.3 %

.001      .01        0.1       1.0        10        100

Радиус (мк)

Радиус (HgI)

T2 (ЯМР)

Рисунок 3.6а Корреляция между результатами ртутной порометрии и
распределением Т2 позволяет с уверенностью предположить, что по нему можно
судить о структуре порового пространства, при условии, что порода насыщена
водой на 100%.

Образцы песчаников
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Рисунок 3.7 Использование модели CBVI при интерпретации каротажа
ЯМР; для рассчета BVI выбирается фиксированное значение T2cutoff.

Рисунок 3.6 б
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Определение суммарной связанной воды BVI
Определение суммарной связанной воды BVI породы - одно из наиболее ранних

достижений скважинного ЯМР и в настоящее время остается самым распространенным

его результатом. Существует два метода для определения BVI. Первый из них –

граничного значения BVI (СBVI) основан на постоянном значении времени T2 (T2cutoff),

которое разделяет распределение сигнала на две составляющие: одну – содержащую поры

малого размера со связанной водой, и другую – с крупными порами, содержащими

свободные флюиды. Второй метод определения BVI называется спектральным BVI (SBVI),

и основан на признании наличия дух составляющих – свободной и связанной влаги в

порах данного размера.

В публикациях о ЯМР, при описании концепции связанной воды (BVI) применяют два

определения. Первое считает связанной воду, содержащуся в коллекторе, которая при

процессе добычи не будет поступать в ствол скважины. Объем такой воды, точно

рассчитывается только в результате измерений относительной проницаемости, но так-же

может быть оценен по данным кривой капиллярного давления. Этот объем влаги, в

основном, является собственно характеристикой породы и условий смачиваемости.

Второе определение, характеризует BVI как объем воды не вытесненной углеводородами

во время заполнения ими порового пространства. Этот объем зависит как от капиллярного

давления так и от высоты над уровнем свободной воды. В переходной зоне, в этот объем

входит вода, которая может добываться. Однако, при достаточном удалении от

поверхности свободной воды, силы капиллярного давления, отожмут всю влагу

способную течь и при этом относительная проницаемость воды будет равна нулю. Во

многих залежах переходная зона занимает незначительный объем от всей колонны

углеводородов, а высота залежи углеводородов не достаточно велика, чтобы иметь

существенную разницу в значениях двух различных BVI. Если же величины BVI

существенно различны, то необходимо определить используется ли объем связанной воды

для оценки обводненности или для рассчетов проницаемости. Для оценки проницаемости,

особенно в случае бурения на РНО, в BVI обязательно должно входить количество воды

не смещенной нефтью.
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Граничное значение BVI

На рисунке 3.7 изображена концепция СBVI. Определение BVI по ЯМР основано на

предположении, что связанная жидкость находиться в малых порах, а свободная – в

больших. Это предположение базируется на наличии связи между размером пор и

поровых каналов, которая часто имеет место. Поскольку значения T2 могут быть увязаны с

размером собственно «тела» поры, то может быть выбрано такое T2, ниже которого все

флюиды будут находиться в порах малого размера и, следовательно, быть неподвижны, а

выше него флюиды будут располагаться в крупных порах и, соответственно, смогут

свободно двигаться. Такое значение времени называется граничным T2 или отсечки T2cutoff.

При разделении распределения T2, отсечка T2cutoff  разбивает MPHI на две части : BVI и

FFI, как это показано на рисунке 3.7. BVI часть в дальнейшем называется граничным

значением BVI или (CBVI ). 18

Вместо предположения о значении величины T2cutoff она может быть измерена в

лабораторных условиях ЯМР методом на керне. В этом случае на образце снимаются

показания при двух насыщениях: Sw = 100% и (после установления соответствующего

значения насыщенности по кривой порового давления или непосредственной отгонки до

определенного давления) при Sw = irreducible (остаточной). Для достижения такой

величины и получения второго насыщения используется центрифугирование образца или

техника измерения на пористой мембране при заданном давлении. Распределения T2

сравниваются, как это показано на рисунке 3.8. Оба распределения изображены в виде

двух кривых – кумулятивной пористости и инкрементной. (Кумулятивное значение

пористости в конкретном распределении T2, например, скажем T2U, является интегральной

суммой всех значений инкрементной пористости T2 со значениями меньше чем, или

равным T2U). Для определения граничного значения T2cutoff по зависимости T2 -

кумулятивная пористость, на оси пористости откладывается значение пористости, при

которой в образце находится только остаточная влага. От этого значения проводится

горизонтальная линия, до пересечения с кривой распределения кумулятивной пористости

снятой при условии Sw = 100%. При пересечении с этой кривой проводится вертикальная

линия до пересечения с осью T2. Значение T2 снятое по этой оси является граничным

T2cutoff . 18
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При отсутствии данных лабораторных измерений граничные значения T2cutoff задаются

исходя из литологии коллектора. Для песчаников T2cutoff = 33мсек., а для карбонатов эта

величина составляет 92 мсек. Такие значения хорошо работают в районе Мексиканского

залива. Однако, величина граничного значения T2cutoff  зависит не только от литологии, на

нее влияют такие параметры как химический состав стенок пор, незначительное

количество парамагнитных и ферромагнитных включений, структура породы, отношение

размера поровых каналов к размеру поры, и другие, пока еще не вполне понятые факторы.

Все это приводит к колебанию T2cutoff померенному на образцах с одинаковым

литологическим составом, как это показано на рисунке 3.9.

Зная, что T2 прямопропорционально размеру пор, величина T2cutoff представляет собой

граничное значение в размерности пор или капиллярном давлении. Следовательно,

значения T2cutoff зависят от капиллярного давления и поверхностой релаксивности.

Лабораторные исследования образцов керна для определения граничного значения T2cutoff

методом показанным на рисунке 3.8, зависят от величины капиллярного давления,

выбранного для остаточного насыщения. Это давление зависит от того используется ли

BVI для оценки обводненности или для рассчета проницаемости. Во втором случае, оно

вместе с кривой порового давления коллектора зависит от высоты над уровнем свободной

воды.

Несмотря на то, что может быть определено значение T2cutoff  которое лучше всего будет

подходить для определения остаточной водонасыщенности данной породы при

соответствующем капиллярном давлении, это одно значение может быть неверным для

остаточной воды в другой породе. Одной из причин такого несоответствия значений T2cutoff

является различие в капиллярных давлениях, при которых породы доходят до состояния

остаточной воды. Это положение иллюстрируется примером на рисунке 3.10. На этом

рисунке капиллярное давление, соответствующее породе А-типа, оказывается слишком

маленьким для породы В-типа. Таким образом, применение граничного значения T2cutoff

определенного по данным капиллярного давления породы В-типа, даст черезмерно

большую остаточную водонасыщенность. Оцененная величина T2cutoff  при использовании

капиллярного давления пород В-типа не может совпадать с величиной для А-типа.
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Рисунок. 3.10 Корректная интерпретация ЯМР нередко требует данных капиллярометрии для выбора
величины давления, которое будет соответствовать количеству остаточной воды. Однако даже при наличии такой
информации, возможна ситуация, когда одним значением нельзя будет охарактеризовать коллектора всех типов.
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Sw = 100 % �

T2cutoff

Sw < 100 % �

T2
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Рисунок. 3.11  (Верхняя часть) В крупно-зернистом коллекторе
который полностью насыщен водой, распределение T2 будет
представлено одним хорошо выраженным пиком. Ниже граничного
значения T2cutoff сигнала не наблюдается, следовательно, CBVI = 0.
(Нижняя часть) После того как нефть вытеснила большую часть
подвижной воды, в распределении Т2 от той-же поры появляется два
пика. Один - ниже граничного значения T2cutoff  и связан с остаточной
водой расположенной на поверхности поры. Другой - от нефти и
расположен выше граничного значения. Значение T2 второго пика
близко к T2 объемной релаксации нефти. Таким образом, CBVI может
быть рассчитано только после того как большая часть воды отжата из
поры.
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Рисунок. 3.12 Для заданного T2, весовой фактор SBVI дает фракционный
объем связанных флюидов в порах чей размер описывается временем T2. Показанная
на рисунке модель - ступенчатая функция и часто используется для описания
весовых факторов.
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Спектральный BVI

Применение фиксированного граничного значения T2cutoff на спектрах 100%-ой

водонасыщенности может, иногда, давать весьма ошибочное определение величины BVI.

Эти ошибки возникают из-за того, что реальные поры не являются простыми

геометрическими формами такими как шар и цилиндр. Поверхности пор могут быть

шероховатыми, а сам поры содержать различные неоднородности. ЯМР видит все

пространство, в котором диффузируют молекулы воды поровых флюидов перед

релаксацией и взаимодействием со стенками, как единую пору. Таким образом,

микропористость, связанная с шероховатостями и включениями, нередко может быть

включена ЯМР-измерениями в суммарной объем крупной поры. Однако, если

углеводороды вытесняют воду, или если флюиды фильтруются через породу, эта часть

влаги, как правило, остается на месте и должна включаться в BVI. Кроме того, во время

отжатия воды из гидрофильной породы на стенках пор всегда остается тонкая пленка

воды. Эта часть влаги так-же должна быть включена в BVI. В модели с фиксированным

граничным значением, эти проблемы частично могут решаться применением несколько

завышенного параметра отсечки, но нередко лучшие результаты получают при

использовании спектрального подхода.

Модель стандартного граничного значения не работает наиболее разительно в случаях,

когда ЯМР-сигнал от 100%-но насыщенной породы, обладает узким спектром, который

может достаточно хорошо быть аппроксимирован одной экспонентой. Такие ошибки

наблюдались в грубо-зернистых песчаниках с высокой проницаемостью и в диатомитах

Северного моря, со сравнительно мелкими порами. 18 Анализы данных сканирующей

электронной микроскопии (SEM) показали, что у диатомитов однородно шероховатые

стенки пор. На рисунке 3.11 приведена типичная ситуация наблюдаемая в породах

Северного моря. После заполнения углеводородами диатомитового коллектора или грубо-

зернистого песчаника, микропористость проявится на ЯМР-измерениях в виде

небольшого пика значений, которого не было видно на спектре от 100%-но насыщенной

породы. Этот эффект менее заметен в случае, когда изначальный спектр полностью

водонасыщенной породы достаточно широк и, следовательно, содержит поры такого-же

размера как и микропористость которая становится видимой при отжатии воды.
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Для решения проблем с которыми столкнулся метод фиксированного граничного значения

BVI, был разработан спектральный метод BVI (SBVI).18 В основном он применялся для

количественного определения свободной воды, но так-же используется и для рассчета

проницаемости. В этом методе предполагается, что поры любого размера, наблюдаемые в

спектре полностью водонасыщенной породы, содержат некоторое количество связанной

воды. Это определяется функцией смачиваемости W(T2,i), где 0 � W(T2,i) � 1, которая

оценивает долю связанной воды в порах каждого размера, как показано на рисунке 3.12. В

литературе предложены различные методики для получения таких взвешенных средних

значений. 19,20 Одна группа методов основана на моделях в которых поры простой

геометрической формы, а связанная вода формирует тонкую пленку на их поверхности. В

этих моделях для описания, простым порам даются сходные средневзвешенные значения

функций. Однако все методы этой группы страдают излишним упрощением используемых

моделей.

Другая группа методов использует более феноменологический подход. Сравнение формул

для рассчета проницаемости, оценка моделей распределения тонкого слоя пленочной

воды, анализ экспериментальных данных и общие положения позволили предположить

функцию влажности в следующей форме:

bmT
W i

i

�� ,2
1 (3.24)

Где T2,i время релаксации, T2 связанное с i- инкрементом, а m и b параметры зависящие от

геометрии порового пространства и определенные по керну методом капиллярного

давления и ЯМР-методом на частично насыщенных образцах. В этом случае: 

ii

n

i
WSBVI ��

�

�

1
(3.25)

где n – число инкрементов, а �i – пористость каждого инкремента.

Рисунок 3.13 служит объяснением уравнения 3.24. Для данного набора образцов керна

рисунок показывает наличие линейной зависимости 1/Swirr и T2gm, где Swirr –
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водонасыщенность при заданном капиллярном давлении, а T2gm – геометрическое среднее

спектра релаксации. Такая форма для взвешенной функции имеет смысл только при

ограничении величины малых и крупных пор.

Практически для любой реальной модели пористости при увеличении размера поры

процент связанной влаги уменьшается. В наиболее функционально простом виде это

свойство может быть представлено как:

i
i

T
W ,2~1 (3.26)

Для микропор существует такой размер ниже которого Wi должно быть равно 1. 

Таким образом, для всех значений T2 выше определенного малого значения, к правой

части простого уравнения 3.26, должна быть добавлена постоянная величина b. Условие b

= 1 означает, что каждая пора содержит подвижную воду, однако это предположение

оказывается неверным в зонах, расположенных выше уровня свободной воды.

В общем случае, для конкретных значений m и b существует величина k такая, что Wk

будет равна 1 во время инкремента T2,k. Затем для всех T2,i меньше, чем T2,k Wi считается

равным 1. Хотя для определения констант m и b, наиболее надежными являются

измерения на керне из скважины где выполнялся каротаж ЯМР, общие значения были

установлены в работе Коатеса18, где анализировались данные по 340 образцам песчаника и

71 карбонатов. В этой работе b принималось равным 1, а значения m для песчаников и

известняков были определены равными соответственно 0.0618/мсек., и 0.0113/мсек. 

Модели с b = 1 наиболее подвержены влиянию ошибок в случаях когда в маленьких порах

существует значительная пористость (например в глинах), которая должна быть оценена

как единица.

Методом для определения обоих параметров - m и b при лабораторных измерениях на s –

числе образцов керна является решение системы уравненй 3.27.
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Wi, i = 1, … , n, являются функциями средневзвешенного. Swirr,i , i = 1, …, s, значения

водонасыщенности образцов при выбранных капиллярных давлениях. �i, i = 1, …, s,

значения пористости образцов. �i,j, j = 1, …, n, значения вкладов пористости i –го образца j

–ый инкремент m- экспонентного совпадения с кривой спада ЯМР. Уравнение 3.25 может

так-же быть решено для других видов функции средневзвешенного. В общем случае, для

полностью водонасыщенной породы определение SBVI с корректно заданным набором

средневзвешенных функций является предпочтительным методом получения значения

связанной воды по данным ЯМР.

Если поры содержат и углеводороды и воду, то использование метода SBVI становится

более сложным. В случае гидрофильной породы, необходимо учитывать два основных

эффекта. Во-первых, поскольку функции средневзвешенного, в довольно широком

диапазоне времен релаксации отличны от нуля, углеводороды скорее всего будут

выглядеть связанной водой, что приведет к завышению SBVI . Во-вторых, хотя поры

маленького размера, которые появятся на спектре распределения ЯМР, когда

углеводороды заполнят центральную часть поры, должны считаться на 100%

водонасыщенными, модель может связать их сигнал со средневзвешенным меньше 1, что

приведет к занижению SBVI. Этот эффект особено важен в случае, когда в зоне

исследования скважинного прибора находиться только связанная вода. Свазанная влага

может быть принята за подвижную только в случае, когда функции средневзвешенного

используются некорректно для данного типа коллектора, или для положения над уровнем

свободной воды. В настоящее время предлагается следующая практика: величины BVI

рассчитываются по обоим методикам – и по граничному значению и по SBVI, а затем из

двух выбирают наибольшую вкличину. Необходимо отметить, что такая практика сильно

зависит от используемых функций средневзвешенного и основывается на работах, где

коэффициэнт функций b = 1. 



Каротаж ЯМР. Принципы и применение
____________________________________________________________________________________________

____________________________________________________________________________________________
93           Основы петрофизики ЯМР                                                                                                                                                       Глава 3

Модель проницаемости MRIL
Рассчет проницаемости по данным ЯМР основан на сочетании экпериментальных и

теоретических моделей и зависимостей.14 Когда в этих моделях все остальные

составляющие постоянны, проницаемость возрастает с возрастанием эффективной

пористости. Единица проницаемости, Дарси имеет размерность площади, и с

практической точки зрения для петрофизики, проницаемость можно считать

пропорциональной квадрату некоторой геометрической величины. Корреляция между

кривыми капиллярного давления и проницаемостью дает веские основания полагать, что

подходящий параметр - размер капиллярных каналов.21,22 ЯМР меряет размер собственно

пор, но практически во всех песчаниках и в некоторых карбонатах, существует хорошая

корреляция между их размером и диаметром поровых каналов.

Две наиболее часто применяемые зависимости для проницаемости связаны с пористостью

в четвертой степени: �4. Величина степени задается несколько произвольно, и она слабо

связана с уравнением Арчи, корреляцией проницаемости и сопротивления породы, и с

дополнительным коэффициэнтом позволяющим учитывать тот факт, что ЯМР меряет

величину собственно пор, а не соединяющих их каналов. В одном из уравнений (модель

индекса свободного флюида или модель Коатеса) параметр размера получают

непосредственно применением T2cutoff который определяет соотношение FFI к BVI, где FFI

- объем свободных флюида и FFI =� - BVI. В другом уравнении, среднего значения T2

(или модель SDR), параметр размера рассчитывают как геометрическое среднее спектра

релаксации T2gm
4. Использование именно этих параметров размера в уравнениях основано

на эмпирических соображениях. Применяются так-же и другие определения параметров

размера. Обе модели показаны на рисунке 3.14. Оба эти подхода хорошо коррелируются с

данными проницаемости определенными в лабораторных условиях на полностью

водонасыщенных образцах. Отметим однако, что модель средних значений T2 перестает

работать в случаях когда поры содержат некоторое количество углеводородов, поскольку

T2gm зависит не только от размер пор.
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Рисунок. 3.14   Верхяя часть - модель проницаемости Коатеса, для описания изменений величины
удельной поверхности (соотношения поверхность-объем)  использует отношение FFI/BVI. Нижняя часть -
модель проницаемости SDR, для описания изменений отношения поверхность-объем, использует среднее
геометрическое значение времени T2.
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Модель свободного флюида

В модели свободного флюида (модели Коатеса), в его наиболее простой форме,

проницаемость может быть выражена как:

22

�
�
�

�

�
�
�

�
�
�

	


�

�
�
�

	


�

�



BVI
FFI

C
k � (3.26)

MPHI (пористость MRIL которая будет рассмотрена в следующем разделе) обычно

используется для рассчета �, а BVI получают методом CBVI или SBVI.18 Коэффициэнт C,

является переменной зависящей от специфических условий отложений и может

различаться в зависимости от района. 

Практические результаты показывают, что модель Коатеса является более гибкой по

сравнению с моделью среднего T2. После внимательной калибровки по данным керна,

модель Коатеса была успешно адаптирована к различным условиям и успешно

применялась для описания разнообразных коллекторов. До той поры пока в BVI не

включен сингал от углеводородов, BVI не зависит от присутствия дополнительной жидкой

фазы такой как нефть или фильтрат РНО, что очень важно при анализе продуктивных

интервалов.

В не полностью промытых газоносных коллекторах MPHI используемое в формуле

Коатеса может быть занижено из-за пониженного углеводородного индекса.

Следовательно, необходимо либо скорректировать MPHI за газ, либо использовать другой

источник данных пористости. Зоны содержащие высокий уровень остаточного газа, при

достаточном пластовом давлении, будут иметь завышенные значения SBVI и CBVI и,

следовательно, в некоторой степени, приведут к незначительному занижению

проницаемости. Тяжелые углеводороды у которых, как правило, сигнал T2 имеет очень

короткие значения, могут приниматься за BVI и, таким образом, так-же занижать

рассчитанную проницаемость.
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Модель среднего значения Т2

Модель среднего геометрического значения Т2 (или SDR модель) описывается как: 
42

2 �gmTak � (3.29)

В уравнении 3.29 эффективная пористость ЯМР заменяется на �, как и раньше, T2gm -

геометрическое среднее распределения T2. Как и в уравнении Коатеса, величина а –

коэффициэнт зависящий от типа коллектора. 

Опыт работ показывает, что модель среднего значения T2 хорошо работает в коллекторах

полностью заполненных водой. Однако, в случае присутствия нефти или фильтрата РНО,

среднее T2 смещается в сторону суммарного T2, и рассчитанная проницаемость

становиться ошибочной. В не полностью промытых, газоносных коллекторах средние

значения T2, по сравнению с промытой газоносной зоной занижены и проницаемость,

соответственно, недооценивается. Поскольку модель среднего T2gm не позволяет вводить

поправки за присутствие углеводородов, в продуктивных отложениях определения

проницаемости ошибочны. 

В трещиноватых породах значения проницаемости рассчитанные и по модели Коатеса и

по SDR оказываются заниженными, поскольку обе эти модели разрабатывались для

коллекторов матричного типа.

Модель пористости методом MRIL
Начальная амплитуда ЯМР эхо-сигнала, или область под кривой распределения T2,

пропорциональна числу протонов водорода содержащихся в поровых флюидах в зоне

исследования. Следовательно, эта амплитуда может быть откалибрована для измерений

величины пористости. На рисунке 3.15 приводиться ЯМР модель для гидрофильного

коллектора. В верхней части рисунка показана типичная модель распределения объемов

пластовых жидкостей в неизмененной части пласта, которая состоит из матрицы и сухих

глинистых минералов, воды связанной с глинистой компонентой, капиллярно-связанной

воды, свободной воды, нефти и газа. Средняя часть рисунка соответствует объемной
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модели зоны проникновения, т.е. той части пласта, где производятся измерения MRIL. Все

элементы остаются прежними, за исключением появления фильтрата бурового раствора,

который замещает часть подвижной воды, нефти и газа. Нижняя часть рисунка показывает

различные измерения пористости по данным MRIL. Отметим, что MFFI характеризует

тот-же объем, что и FFI, а MPHI не включает в себя сигнал от воды связанной с глинистой

компонентой и, вероятно, с другими микропорами глинистой размерности.

На рисунке 3.15 показаны четкие границы отделяющие элементы модели пористости

связанные с MFFI, BVI и MCBW. Эти границы обязательно соответствуют четко

выраженным составляющим спектра T2 . Для BVI это рассматривалось в деталях ранее. В

случае с глинами вода связанная с микропористостью имеет интервал значений времен

спада, который может перекрывать времена от капиллярно-связанной воды; в этом случае,

в спектре значений времен T2 может не быть четкой границы между BVI и MCBW. 

И минералы матрицы и глинистые минералы содержат атомы водорода в виде

гидроксильных групп (ОН). Поскольку времена их продольной релаксации T1 слишком

длинные, чтобы быть полностью поляризованными движущимся прибором MRIL, а

времена T2 слишком короткие, чтобы быть записаны, водород воды гидратации и ОН-

групп «невидим» для прибора MRIL.23 Ядра водорода глинисто-связанной воды

адсорбированы на поверхностях глинистых минералов. Протоны этих ядер могут быть

поляризованы, а сигнал от них может быть получен, при условии применения достаточно

коротких времен TE. Вода глинистой компоненты меряется в MRIL циклом CPMG с

TE=0.6мсек., и временем поляризации TW, установленным для частичного или полного

восстановления. Результаты измерений этой составляющей общей пористости

обозначаются как MCBW и позволяют оценить количество воды связанной с глинистой

компонентой. Аналогично, существуют протоны водорода в капиллярно-связанной воде и

подвижных флюидах, таких как свободная вода, фильтрат бурового раствора, нефть и газ.

Эти протоны водорода меряются с использованием стандартной записи T2 циклом CPMG,

с TE =1.2 мсек., и с установкой TW на полную поляризацию. Такие измерения приводят к

определению MPHI. 
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Рисунок. 3.15 Измерения прибором MRIL в зоне проникновения (нижняя объемная модель); фильтрат
БР вытесняет часть свободных флюидов которые находились в неизмененном коллекторе (верхняя модель).
Измерения MRIL (нижняя модель) зависят от флюидов, а не от материалов матрицы или сухой глины.
Пористость MRIL зависит от углеводородного индекса HI, времени поляризации TW и времени между эхо-
сигналами TE.
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Измеренная амплитуда эхо-сигналов и, следовательно, MPHI зависят от углеводородного

индекса HI флюидов. Параметр MPHI откалиброван на число протонов в воде, у которой

индекс равен единице. Если углеводородный индекс любого из пластовых флюидов

сильно отличается от единицы, то для рассчета MPHI необходимо ведение поправок. 

Обе величины – и MPHI и MCBW зависят от времени поляризации TW. И у легких нефтей

и у газа время релаксации T1 очень длинное. При недостаточном времени поляризации,

MPHI может недооценивать величину эффективной пористости. 

Обе величины – и MPHI и MCBW зависят от времени между эхо-сигналами TE. При

уменьшении TE регистрируются более быстрые компоненты релаксации T2,

следовательно, увеличение времени TE приводит к потере быстрых времен T2, что, в свою

очередь, занижает значения MPHI и MCBW. 

Кроме того, на оба измерения – и MPHI и MCBW оказывает влияние импульс 90� B1

циклов CPMG. Если угол импульса меньше 90�, то магнетизация будет «недогружена», а

измеренная амплитуда слишком мала и величины MPHI и MCBW – недооценены. Если

углы импульсов окажутся больше 90�, то магнетизация будет «перегружена», измеренная

амплитуда опять будет мала и, соответственно, величины MPHI и MCBW – снова

недооценены. Эта проблема, как правило, решается калибровкой прибора.
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ЯМР-свойства пластовых флюидов могут быть

весьма различны. Эти отличия дают

возможность типизировать углеводороды и

иногда определять их количество. В начале

данной главы рассматриваются ЯМР свойства

углеводородов и методики их количественного

определения на основе релаксации времени Т1

и/или контраста диффузий. Затем описывается

качественное прямое моделирование влияния

нефти и газа на распределение Т2 в различных

условиях.

ЯМР свойства углеводородов
ЯМР-свойства флюидов такие как Т1 и Т2 для нефти и газа находящихся в пластовых

условиях, для гидрофильных пород, могут быть оценены по уравнениям приведенным в

главе 3. Уравнения 4.1 – 4.4 позволяют рассчитать Т1 и Т2 для “мертвой“ нефти и газа.

“мертвая нефть”
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В уравнениях 4.1 – 4.4 предполагается, что для Т1 релаксация флюида определяется

объемной составляющей и, что релаксация Т2 содержит две компоненты – объемную и

диффузионную. Выражения коэффициэнтов диффузии представленные в уравнениях 3.12

и 3.13 были использованы в уравнениях 4.2 и 4.4. Если диффузия отсутствует Т1 и Т2

считаются одинаковыми. Гидрофильность породы подразумевает, что обломочные зерна

породы покрыты слоем воды и, таким образом, предотвращен непосредственный контакт

между собственно породой и любыми углеводородами. Следовательно, отсутствует

составляющая поверхностой релаксации. Факт отсутствия поверхностой релаксации у

нефтей в гидофильных коллекторах подтвержден многочисленными лабораторными

исследованиями. Однако, в 1997 г. Стралей (Straley) неожиданно обнаружил в серии своих

эксперименов кажущуюся поверхностную составляющую релаксации у метана на

образцах песчаников и карбонатов.17 В то время его данные не были подтверждены

исследованиями других лабораторий, и не появилось никаких публикаций,

обосновывающих теорию такого явления. Поверхностная компонента релаксации,

описанная Стралей, будет иметь минимальное влияние на выделение газа с применением

метода TDA рассмотренного в главе 6. Подтверждение этому может быть получено при

анализе уравнений TDA представленных в приложении к главе 6.

В реальности, время Т2 “сырой” нефти представлено распределением значений, а не одним

пиком и зависит от вязкости.2,3 При увеличении вязкости протоны водорода становятся

менее подвижными и поэтому релаксируют значительно быстрее. Следовательно,

увеличения вязкости укорачивают геометрическое среднее времени Т2. Более вязкие

нефти, как правило, имеют более широкие спектры распределения Т2. Это расширение

происходит благодаря различной подвижности протонов в компонентах нефти, а более

вязкие нефти нередко содержат большее число углеводородов. Кроме того, даже
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некоторые легкие нефти содержат значительное число составляющих и могут обладать

расширенными Т2 распределениями. На рисунке 4.2 показаны ЯМР-измерения

распределения Т2 на образцах “сырой” нефти с различными вязкостями.

ЯМР-сигнал газа, в обычных пластовых условиях, сильно отличается от сигнала от нефти

или воды. 4,5  Поэтому измерения ЯМР могут быть использованы для количественного

определения газовой фазы в коллекторе. Сухой газ состоит, в основном, из метана (СН4),

вместе с некоторым количеством легких углеводородных компонент и небольшого

количества не-углеводородных веществ. На рисунке 4.2 показано как меняются значения

углеводородного индекса, коэффициэнта диффузии и времен релаксации Т2 и Т1 метана,

при изменении давления и температуры. 1,6,7

В таблице 4.1 приводятся примеры объемных ЯМР-свойств флюидов таких как рассол,

нефть и газ в пластовых условиях.6 Различия в значениях Т2, Т1 и D у этих флюидов

позволяют распозновать их по данным ЯМР. Были разработаны две методики типизации

углеводородов – двойного времени задержки TW и двойного времени между эхо-

сигналами TE. Метод двойного TW основан на контрасте значений Т1 в воде и в легких

углеводородах. Метод двойного TE использует разницу диффузии воды и нефти средней

вязкости или жидкости и газа.

Таблица 4.1 ЯМР-свойства пластовых флюидов в пластовых условиях

Флюид Т1 

(мсек)

Т2 

(мсек)

Типичное 

Т1/Т2

HI �

(сПуаз)

D0x10-5

(см2/сек)

Рассол 1-500 1-500 2 1 0.2-0.8 1.8-7

Нефть 3,000-4,000 300-1,000 4 1 0.2-1,000 0.0015-7.6

Газ 4,000-5,000 30-60 80 0.2-0.4 0.011-0.014

метан

80-100
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Рисунок 4.1 Как показано на примере трех образцов нефти, время T2  у сырой нефти меняется с изменением
вязкости. Для легкой нефти (верх), с вязкостью 2.7 сПуаз, измеренные значения T2 практически
сконцентрированы возле одного значения, примерно 609 мсек. Для нефти средней вязкости (середина), с
вязкостью 35 сПуаз, значения T2 формируют значительно более широкое распределение с длинным “хвостом”
быстрых времен и средним геометрическим в 40 мсек. Для значительно более тяжелой нефти (низ) с вязкостью
4304 сПуаз, T2 образет широкое распределение с “хвостом” и геометрическим средним всего лишь 1.8 мсек.
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Рисунок 4.2 Водородный индекс, коэффициэнт объемной диффузии, и
времена релаксации Т1 и Т2 метана зависят от давления (глубины - х1,000
футов) и температуры. На этих палетках показаны семейства кривых для
различных градиентов температур (в �F/100 футов). Водородный индекс и Т1
рассчитывались для градиента давлений 43.3 psi/100футов. Кривые Т2
построены для (1) TE=0.6 мсек., (2) градиента магнитного поля 18 Гаусс/см., и
(3) ограниченной диффузии (D/Dg) = 0.7 в порах породы, где D - коэффициэнт
диффузии метана, Dg - объемный коэффициэнт диффузии метана. Согласно
этим палеткам, на глубине 25,000 футов, при градиенте температур в 1.5
�F/100 футов, и градиенте давлений в 43.3 psi/100футов, водородный индекс
метана будет равен 0.48, коэффициэнт объемной диффузии - 0.0015, Т1 = 3,500
мсек. и Т2 = 29 мсек. В этих условиях прибором MRIL сигнал газа
регистрироваться не может.
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Рисунок 4.3 На примере данных образца диатомита из Северного Моря, показано, как распределение Т2 меняется в
зависимости от водонасыщенности. При 100% насыщении водой, распределение представлено единичным
максимумом со значением 27 мсек., свидетельствующим о наличии пор одного размера. При уменьшении Sw
(увеличении нефтенасыщенности), амплитуда “водяного”  пика снижается - из-за уменьшения количества воды.
Амплитуда “нефтяного” пика на отметке около 200 мсек., возрастает из-за увеличения объема нефти. Далее, (при
условии, что поверхность порового пространства остается той-же и при условии, что поверхностная релаксация не
меняется, а меняется только объем воды) величина поверхность-объем сигнала от воды меняется и, соответственно,
снижается значение Т2 воды.
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Рисунок 4.4 При измерении с двойным временем TW, во время записи с TWshort  полностью
поляризуется только вода, а во время записи с TWlong  полностью поляризуются обе составляющие (и
вода и углеводороды). Результат получают при вычитании полученных спектров T2 и используют для
выделения и количественной оценки углеводородов.
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Типизация углеводородов ЯМР

Распределение Т2 в частично насыщенной породе
Как было показано на рисунке 3.11, сигнал от единичной поры, полностью насыщенной

водой, представлен четким пиком на средних значениях распределения Т2. При

вытеснении подвижной влаги нефтью, единичный пик на распределении Т2, распадается

на два. Один из них имеет незначительную амплитуду и появляется на ранних временах,

ниже начальных значений Т2 и связан с остаточной водой в микропорах или на

поверхности поры. Другой пик, расположенный выше начального Т2, связан с нефтью и

имеет значение Т2, близкое к значению Т2 объемной релаксации нефти. Это явление

показано на рисунке 4.3 на примере диатомита Северного моря. Диатомитовые коллектора

Северного моря обладают аномально большим количеством воды связанной с

поверхностью пор.

Контраст в релаксации Т1

Таблица 4.1 и уравнения 4.1 – 4.3 показывают, что и газ и нефть обладают значительно

более длинными временами релаксации Т1, чем вода. Таким образом, для полной

поляризации, углеводородной фазе потребуется больше времени TW, чем водной.

Измерения с двойным TW основаны на контрасте значений Т1 у воды и легких

углеводородов и производятся с использованием двух времен задержки TW: коротким

TWshort и длинным TWlong.

Для короткого TW:
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(4.5)

Для длинного TW:
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где T1wi и T2wi соответственно T1 и T2 воды в i –том инкременте;

Рисунок 4.4 иллюстрирует метод двойного времени TW. Для того чтобы достичь

поляризации в 95% необходимо время TW в три раза большее, чем T1. Максимальное

значение T1 воды в порах песчаника около 0.5 сек., а минимальное T1 в легких

углеводородах примерно 3 сек. Таким образом, вода будет полностью поляризована при

времени TWshort по крайней мере 1.5 сек (см. рисунок 4.4, верх слева), а соответствующая

поляризация углеводородов, во многих случаях, будет достигнута при TWlong в 9 сек. (см.

рисунок 4.4, верх справа). (Для TWlong может понадобиться введение поправок за давление

и температуру углеводородов, а для газа полная поляризация может оказаться

непрактичной). Поскольку вода полностью поляризована при обоих временах

поляризации – коротком и длинном, у ее сигнала будет совершенно одинаковая амплитуда

и распределения T2 (см. рисунок 4.4. низ). А легкие углеводороды будут полностью

поляризованы только в случае если используется время TWlong. То есть в разнице между

двумя распределениями времен T2, полученных при TWlong и TWshort, останется сигнал

только от углеводородов. Таким образом, легкие углеводороды могут быть выделены и

количественно охарактеризованы методами рассмотренными в главе 6.

Контраст в диффузии
Время T2diffusion зависит от D, G, и TE. Для рассолов, нефтей средней- и высокой вязкости,

величина Dgas значительно больше чем Dw, и Dw значительно больше чем Doil (см. таблицу

4.1). Следовательно, время T2diffusion у этих флюидов будет весьма различно и эти различия

могут быть усилены и оценены при записи ЯМР сделанной с различными TE. Измерения с

двойным временем TE используют два различных значения: TEshort и TElong.
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Для короткого времени TE:
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Когда TW >> 3�max(T1w, T1oil, T1gas),
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Для длинного времени TE:
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Когда TW >> 3�max(T1w, T1oil, T1gas),
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На рисунке 4.5 показано измерение с двойным TE, в котором TElong = 3 TEshort.

Предполагается, что поровый флюид представлен двумя фазами, одной – с большим

значением D (на рисунке эхо-сигналы показаны синим цветом), и другой - с малым D

(эхо-сигналы показаны красным цветом). Разница в спаде конкретной компоненты между

измерениями при TElong и TEshort оказывается больше для флюида с большим D. В

частности, у составляющей с большим значением D спад при временах TElong происходит
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значительно быстрее, чем при измерениях с TEshort, в то время как у составляющей с

маленьким D спад при TElong, лишь немного отличается от TEshort. Это различие между

двумя компонентами отражается в соответствующих распределениях Т2 и может

использоваться для типизации пластовых флюидов.

Численное моделирование
ЯМР-сигналы при измерениях с двойным TW или двойным TE могут быть смоделированы

при помощи уравнений описанных в начале этой главы.8 Это численное моделирование

необходимо как для планирования работ (глава 8), так и для интерпретации результатов

записи с двойным TW или двойным TE (глава 6). 

Влияние нефти на распределение Т2

Влияние нефти на распределение Т2 меняется в зависимости от набора флюидов

присутствующих в поровом пространстве.

Вода и легкая нефть
На рисунке 4.6 (верхняя часть) показана объемная модель гидрофильной породы

содержащей воду и легкую нефть. Наличие резких границ между различными

составляющими модели совсем не обязательно означает наличие таких границ в спектрах

спада. При использовании короткого времени TE и длинного TW для измерений эхо-

сигналов, у воды будет широкое распределение Т2, в то время как сигнал от легких нефтей

будет иметь тенденцию к значительно более узкому распределению вокруг единичного

значения Т2.3 Между коэффициэнтами диффузии воды и легкой нефти существует весьма

незначительная разница, следовательно, контраст значений D двух флюидов может быть

не слишком очевиден. Значения времени Т1 у легкой нефти и поровой воды весьма

различны и эта разница между ними может легко распозноваться. 
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Рисунок 4.5 При измерении с двойным временем TE и в коллекторе с двумя флюидами, эхо-сигнал от
компоненты с большим D, (зеленая кривая), релаксирует значительно быстрее, во время записи с TElong , чем записи с
TEshort.  Релаксация флюида с небольшой составляющей D, (красная кривая), незначительно возрастает при измерениях
с TElong. Эти различия в спаде сигналов диффузии отражаются на распределении T2 и могут быть использованы для
типизации поровых флюидов.
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Рисунок 4.6  На этих объемных моделях коллектора с легкой нефтью, сверху представлен неизмененный пласт, соответственно, без фильтрата БР. Прибор MRIL
работает с зоной проникновения и сигнал частично приходит от фильтрата (нижняя и средняя модели). Скважинный прибор не видит матрицу и сухую глину.
Распределения Т2, полученные при записи с двойным TW, будут содержать сигнал от нефти. При использовании РВО (средняя модель), сигнал от нефти может быть
сконцентрирован возле одного значения (в данном примере - около 500 мсек.). В случае с РНО (нижняя модель), согласно теории, может быть два пика - один от
сырой нефти (в примере - 500 мсек.) и другой от ФБР (в примере - 200 мсек.). Однако, в реальной жизни, оба сигнала в распределении Т2 обычно перекрываются, как
это показано на рисунке зеленой линией. Сигналы от углеводородов останутся в разности спектров Т2 в обоих случаях - и при РНО и при РВО.
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На нижней и средней частях рисунка 4.6, показано как измерения с двойным временем TW

могут применяться для разделения воды и легкой нефти. Поскольку существует

значительный контраст значений Т1 у легкой нефти и воды, сигнал от водной фазы

пропадает, когда распределения Т2 записанные при TWlong и TWshort вычитаются.

Полученный в результате “разностный” спектр содержит сигнал только от легких

углеводородов. Амплитуда сигнала в спектре разности будет в значительной степени

зависеть от различия времени Т1 у флюидов двух типов и от разницы значений TWlong и

TWshort. Обычно времена TWlong и TWshort выбирают таким образом, что TWshort � 3xT1,bulk

water и TWlong � 3xT1,light oil. В случае применения РНО, в распределении Т2 появится сигнал

от фильтрата. На рисунке 4.6 спектр Т2 сосредоточен возле отметки 500 мсек., а у

фильтрата РНО Т2 примерно 200 мсек. В спектре разностей будут присутствовать оба

сигнала – и от легкой нефти и от фильтрата. Обычно, из-за смешивания пластовой нефти и

фильтрата РНО и, как следствие, «смешивания» ЯМР-сигналов, бывает сложно распознать

их индивидуальные вклады.

Вода и вязкая нефть
Когда в коллекторе присутствуют вода и вязкая нефть, ситуация может быть описана

моделью представленной на рисунке 4.7. В случае, если используются маленькие времена

TE и TW, то эхо-сигнал от воды, померянный градиентным полем MRIL, как правило,

будет иметь широкий спектр распределения Т2, так-же как и сигнал от высоковязкой

нефти. Время объемного спада Т2 у вязкой нефти и вклад спада от поверхностной

релаксации воды различаются незначительно. Однако, у воды и вязкой нефти отличаются

коэффициэнты диффузии, следовательно, это различие двух флюидов можно

распозновать.

На рисунке 4.7 показано, как измерения с двойным временем TE применяются для

разделения воды и вязкой нефти. Поскольку существует значительный контраст в

значениях диффузии между водной фазой и вязкой нефтью, Т2 воды померянное при TElong

будет значительно более сдвинуто влево (в сторону низких значений Т2 ), чем у вязкой

нефти, по сравнению с распределением Т2 померенным при TEshort. Быстрые компоненты
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сигнала Т2 от водной фазы будут сдвинуты весьма незначительно. Как правило, при

использовании РНО его вязкость в пластовых условиях ниже чем у “сырой” вязкой нефти.

Компоненты Т2 фильтрата РНО померянные с TEshort будут располагаться около

единичного пика значений Т2, большего чем пик значений вязкой нефти. Однако, пик Т2 от

фильтрата РНО при TElong может оказаться на временах, меньших, чем пик сигнала от

вязкой нефти, из-за большей диффузивности фильтрата. Внимательный подбор времен

TElong позволяет разделять Т2 компоненты от вязкой нефти и воды, независимо от того,

применяется ли РНО или раствор на водяной основе. В общем случае, поскольку

диффузионный сдвиг происходит нелинейно, времена релаксации с величинами

большими, чем время диффузионной релаксации, будут сдвигаться влево значительно

сильнее, чем времена с меньшими значениями. Эта нелинейность в сдвиге, при

увеличении диффузии, приводит к более резкому проявлению индивидуальных пиков.

Влияние вязкости и смачиваемости на нефтяной сигнал 

в распределении времени Т2

До сих пор, говоря о породах, мы предполагали исключительно гидрофильные пласты.

Если в разрезе, где выполнялся ЯМР-каротаж, встречаются не только гидрофильные, но

так-же и частично- или полностью гидрофобные пласты, то значения Т2 от нефти и

распределение Т2 будут сильно отличаться от рассмотренных ранее.8,9  Вероятно, породы

никогда не бывают исключительно гидрофобными, некоторые из них находятся в

состоянии средней и/или смешанной смачиваемости. Участки со смешанной

смачиваемостью, как правило, образуются в условиях, когда нефть бывает зажата в

коллекторе, входит в контакт и формирует пленку на поверхности зерен наиболее

крупных пор. Сырые нефти весьма разнятся по способности изменять тип смачиваемости

поровой поверхности. Поверхности пор меньшего размера или микротрещин крупных пор

не вступают в контакт с нефтью и остаются гидрофильными. Для метода ЯМР

принципиально важным моментом является наличие защитного слоя воды между зерном

породы и жидкими углеводородами. Однако, это условие не совпадает с условиями

измерения смачиваемости другими методами. Например, часть защитного покрытия

может быть удалена , но порода по-прежнему будет считаться гидрофильной при анализе



Каротаж ЯМР. Принципы и применение
____________________________________________________________________________________________

____________________________________________________________________________________________
123                                                                                                  Основы типизации углеводородов методом ЯМР      Глава  4

USBM (один из стандартных подходов разработанных United States Burau of Mines –

Горное Бюро США). 

Когда молекулы нефти непосредственно соприкасаются с поверхностью породы,

происходит поверхностная релаксация, которая значительно усложняет механизм

релаксации времени Т2. Если порода полностью смочена нефтью то, по сравнению с

гидрофильной ситуацией, углеводородная и водяная фаза меняются ролями, и поведение

всех флюидов в целом, становится сходным. Однако детали спектра могут различаться,

т.к. поверхностная релаксация нефти, скорее всего будет отличаться от водяной. Если в

коллекторе присутствуют два смачивающих флюида, ситуация представляется весьма

сложной и разделение между нефтью и водой затруднительно.

На рисунке 4.8 показано влияние вязкости нефти и типа смачиваемости на положение

сигнала от углеводородов в спектре распределения Т2 для нефтесодержащей породы.7 На

рисунке предполагается, что (1) время TW достаточно велико, чтобы принебречь влиянием

от различий Т1, а (2) время TE достаточно мало, чтобы принебречь влиянием эффектов

диффузии.

Как уже говорилось ранее, в гидрофильном коллекторе нефтяная составляющая

распределения Т2, в основном, зависит от вязкости углеводородов (колонка и

гидрофильной породой на рисунке 4.8). Заметим, что при любой смачиваемости,

компонента от тяжелой нефти на распределении Т2 обладает весьма широким спектром и

попадает в область связанной воды BVI (колонка с тяжелыми углеводородами на рисунке

4.8). Это приводит к сложностям при попытке определения тяжелых углеводородов по

данным MRIL. Для случаев со смешанной смачиваемостью, которые представляют один

из наиболее серьезных вызовов методу ЯМР, водяная и углеводородная фазы на

распределении Т2 образуют широкие, перекрывающие друг-друга спектры (колонка со

смешанной смачиваемостью на рисунке 4.8). Хотя это перекрытие не повлияет на

определение суммарной пористости, оно несомненно скажется на определении BVI, ИСФ,

проницаемости и, конечно, на типизации углеводородов. Для редких случаев с

гидрофобными коллекторами, нефтяные молекулы будут абсорбированы на поверхностях
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всех пор, в этом случае, параметр BVI будет показывать суммарный объем остаточной

нефти. Сигнал от водяной фазы будет всегда находиться в области ИСФ (колонка

гидрофобной породы на рисунке 4.8), и должен характеризоваться наличием только

объемной компоненты. Оба времени Т1 и Т2 у воды представлены пиками с одним

значением и значительно более длинными временами релаксации, по сравнению с

соответствующими временами релаксации нефти, находящейся в контакте со стенками

пор. 

Влияние газа на распределение Т2 в различных условиях
Газ всегда является несмачивающей фазой в поровом пространстве породы.

Следовательно, время Т1 у газов может быть приравнено к времени объемной релаксации

(в работе Стралей (Straley)1 высказывается мнение, что иногда это предположение

излишне упрощает реальность), которое значительно более длинное, по сравнению с Т1

воды находящейся в контакте со стенками пор. Диффузная компонента газа Т2diffusion будет

доминировать в Т2 газа. Эти характеристики и наличие градиентного поля позволяют

регистрировать сигнал от газа прибором MRIL. 

Вода и газ
На рисунке 4.9 представлена объемная модель породы содержащей воду и газ. Модель

сделана для случаев неизмененного пласта и зон проникновения фильтратов РВО и РНО.

Если при записи использовать маленькое время TE и длинное время TW, то эхо-сигнал от

воды будет иметь широкий спектр, а сигнал от газа представлен почти одиночным Т2

пиком. Времена Т1 у газа и воды сильно различны, это различие можно использовать для

разделения сигналов от газа и воды, как это показано в средней и нижней частях рисунка

4.9.

Так-же как и в случае с легкой нефтью, существует заметный контраст значений между

газом и водой находящейся в контакте с поверхностью породы. Таким образом, когда

проводят измерения с двойным TW (см. глава 6) и полученные в результате спектры
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распределения Т2 вычитаются друг-из-друга, в спектре разности сигнал от воды

уничтожается и остается только сигнал от газа. Амплитуда газовой составляющей в

спектре разницы будет сильно зависеть от разницы между Т1gas и Т1w и разницы между

TWshort и TWlong. Обычно параметры записи выбирают таким образом, что TWlong � Т1gas и

TWshort � 3х Т1w. Кроме того, если в коллекторе присутствует газ, то необходимо введение

поправок за поляризацию и водородный индекс, поскольку у газа низкое значение HI и

длинное время Т1.

При использовании РНО, сигнал от фильтрата появляется на распределении Т2. На

рисунке 4.9 сигнал Т2 от газа располагается в районе отметки 40 мсек., а Т2 для фильтрата

РНО – около 400 мсек. Оба сигнала – и от газа и от фильтрата РНО останутся в спектре

разности.

Вода, легкая нефть и газ
Если в поровом пространстве породы находятся одновременно вода, легкая нефть и газ

(рисунок 4.10), и газ и нефть могут быть выделены по контрасту значений их Т1. При этом

используются измерения с двойным временем TW, а время TWlong должно быть в три раза

больше, чем максимальное время Т1 легкой нефти, газа и (если использовался РНО)

фильтрата БР. В случае применения раствора на нефтяной основе, в разностном спектре

будут присутствовать сигналы от легкой нефти, газа и фильтрата.

Несмотря на то, что диффузия у газовой и жидкой фаз сильно различается, это различие

редко используется для разделения сигналов от двух флюидов. В общем случае, сигнал Т2

от газа очень мал и он нередко попадает в спектр значений BVI. При использовании

записи с длинным временем TE, сигнал газа может совсем исчезнуть из распределения Т2.

В градиентном магнитном поле время релаксации Т2 газа сильно зависит от времени

между эхо-сигналами. При внимательно подобранном времени TE и силе градиента

(связанной с частотой), сигнал газа может быть отделен от BVI, легкой нефти и фильтрата

РНО. Выбор этих параметров является одним из ключевых моментов при планировании

записи ЯМР с контрастом значений Т1 (т.е. с двойным временем TE).
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Рисунок 4.7 Коллектор с вязкой нефтью (верхняя модель) представляет неизмененную зону. Измерения MRIL будут
включать сигнал от фильтрата в зоне проникновения. В случае с РВО (середина), запись с двойным TE позволяет разделить
нефть и воду. При записи с динным временем TE быстрые составляющие воды сдвигаются влево, и окажутся на распределении
спектра Т2 дальше, чем сигнал от нефти. В случае с РНО (низ), сигнал от фильтрата может привести к появлению
дополнительного пика.
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Рисунок 4.8 Положение и ширина спектра Т2 нефтяной компоненты зависит от вязкости нефти и типа смачиваемости
коллектора. Легче всего выделять нефть в гидрофильном коллекторе из-за небольшой ширины распределения и различия
в положении максимумов сигнала. Самым сложным является случай со смешанно-смоченным коллектором, где
распределения  от нефти и воды значительно шире и перекрывают друг-друга.
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Рисунок 4.9  Модель газоносного коллектора: неизмененная часть пласта (верх). MRIL работает в зоне
проникновения и будет включать сигнал от фильтрата. При записи с двойным временем TW в условиях РВО
(середина), газ может быть выделен при вычитании получаемых спектров Т2. При использовании РНО (низ), спектр
разницы будет так-же содержать сигнал от фильтрата БР.
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Рисунок 4.10  Модель коллектора содержащего газ и легкую нефть: неизмененная часть пласта (верх); MRIL работает в
зоне проникновения и будет частично включать сигнал от фильтрата. При РВО и измерении с двойным TW (середина),  газ и
нефть могут быть отделены от воды вычитанием соответствующих распределений Т2. Если применялся РНО (низ), то в спектре
разности будет сигнал от фильтрата. Возможность  разделения газа и легкой нефти зависит от наличия заметной разности в
величинах спектра Т2.
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Процесс измерения прибором MRIL состоит

из четырех основных шагов: 

1. поляризации ядер;

2. разворачивания магнитизации;

3. регистрации эхо-сигналов спина;

4. повторная поляризация ядер;

В этой главе рассматривается процесс

измерения ЯМР скважинным прибором

MRIL и связанные с этим вопросы, такие как

вертикальное разрешение, глубина

исследования, уровень сигнал-помеха и

активации.

Поляризация
В скважинном приборе MRIL есть постоянный магнит который генерирует статическое

поле.1,2 Перед записью ЯМР каротажа, ядра водорода в породе находятся под действием

магнитного поля Земли. Поскольку сила этого внешнего поля сравнительно мала, то и

наведенная им в протонах магнетизация тоже невелика. При движении прибора MRIL по

стволу скважины, сильное поле B0 доминирует и поляризует протоны (т.е. выравнивет их

по направлению с полем B0). Сила магнитного поля Земли около 0.5 Гаусс, прибор MRIL в

зоне измерений генерирует поле в 176 Гаусс, т.е. в 350 раз сильнее. Для достижения

«полной» поляризации в протонах находящихся в поровом пространстве, требуется до

нескольких секунд времени, в течении которого прибор двигается по стволу. Надежные

____________________________
  Глава  5

Принципы 
скважинного прибора

MRIL
____________________________
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измерения могут производиться при условии, что протоны находятся в одинаковом

статичном магнитном поле в течении всего цикла записи. На рисунке 5.1 показано

возрастание поляризации со временем. После того как протоны поляризованы, они

находятся в равновесном состоянии и будут сохранять поляризацию при отсутствии

воздействий. Собственный магнитный момент поляризованного семейства протонов

обозначается М0, как это описано в главе 2.

Поворот магнетизации и выделение эхо-сигналов спинов
Методика MRIL для разворота магнетизации и регистрации эхо-сигналов спинов в

коллекторе показана на рисунке 5.2. Скважинный прибор MRIL создает статичное

магнитное поле с градиентом в радиальном направлении, таким образом, Ларморовская

частота протонов будет меняться в зависимости от расстояния до прибора.1,2 Антенна,

окружающая магнит, служит передатчиком осцилляционного поля и приемником эхо-

сигналов от спинов. Антенна генерирует поле В1 перпендикулярное направлению В0,

которое разворачивает вектор магнетизации в поперечном направлении. Значения,

выбранные для частоты и полосы пропускания импульсов поля В1, определяют объем

исследования и , следовательно, глубину исследования прибора.

Скважинный прибор MRIL регистрирует спад эхо-сигнала, как это показано на рисунке

5.3. Цикл импульсов CPMG компенсирует погрешности дефазирования вызванные

градиентными эффектами поля В0, однако изменения фаз связанные с взаимодействием

молекул или с диффузией необратимы. Когда происходят эти необратимые изменения,

протоны не могут больше быть полностью ре-фокусированы и эхо-сигналы в

последовательности CPMG будут падать. Прибор MRIL меряет амплитуды спада эхо-

сигналов в CPMG для регистрации спада поперечной магнетизации и, следовательно,

необратимого дефазирования. После записи спада эхо-сигналов, магнит повторяет

поляризацию для следующего измерения циклом CPMG, как показано на рисунке 5.4.
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Рисунок 5.1 (1) До включения внешнего магнитного поля спины протонов ориентиро
После начального воздействия поля прибора MRIL спины прецессируют в направлении статич
и 4) При продолжении воздействия оси спинов приближаются к положению осей прецессии
графике, суммарная магнетизация семейства протонов возрастает.
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Рисунок 5.2 Антенна MRIL (на рисунке слева) подает 90° осциллирующий импульс В1 д
протонов и поворота магнетизации на 90°. После сдвига протонов по фазе, антенна MRIL (н
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Рисунок 5.3 Для генерации и приема эхо-сигналов прибор MRIL подает 90° импульс В1 за
которым следует серия 180° импульсов В1.
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Рисунок 5.4 Цикл измерения прибором MRIL , который постоянно повторяется во время записи ЯМР
каротажа, состоит из поляризации протонов, за которой следует запись эхо-сигналов. Спад эхо-сигналов
отражает изменения сдвига фаз, которые последовали за поляризацией.
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Скорость записи и вертикальное разрешение
Во время движения прибора MRIL по стволу скважины, семейство протонов, с которыми

он взаимодействует, постоянно меняется. Эти изменения влияют на собственные

характеристики прибора и параметры записи двумя путями, как это показано на рисунке

5.5.

Во-первых прибор сталкивается с “новыми” протонами, которые еще не были

поляризованы и оставляет за собой “старые” уже поляризованные. Время, необходимое

для поляризации новых протонов, до того как они попадут в объем измерений прибора,

контролируется временами релаксации Т1. Время поляризации TW напрямую зависит от

длины магнита и скорости записи. Для обеспечения больших скоростей записи, у прибора

MRIL (модификация С) магнит длиннее антенны и выступает на 24 дюйма над и под ней,

что позволяет осуществлять запись при движении как вверх по разрезу, так и вниз. При

такой конструкции прибор поляризует протоны до того, как они попадают в область

измерений.

Во-вторых, во время цикла CPMG, протоны, чьи векторы магнетизации уже были

развернуты в поперечном направлении, покидают область исследования, одновременно с

этим, в неё попадают поляризованные протоны, чьи векторы не были ещё повернуты.

Если антенна слишком короткая или скорость записи слишком высока, этот процесс

снижает амплитуду регистрируемых затем эхо-сигналов. Для обеспечения приемлимой

скорости записи, как правило, позволяется потеря до 10% точности – т.е. объем

исследования за время одного цикла CPMG может меняться на 10%. Поскольку объем

исследования определяется размером антенны, длинная антенна обеспечит более высокую

скорость записи, но при снижении вертикального разрешения. Длинна антенны у MRIL -

24 дюйма.

Если во время цикла измерений прибор не двигается (т.е. производиться стационарная

запись), вертикальное разрешение (VR) равняется длинне антенны (L). Если во время

измерений прибор смещается, то разрешение уменьшается со скоростью

пропорциональной скорости записи. Для введения поправки за влияние шумов при записи



Каротаж ЯМР. Принципы и применение
____________________________________________________________________________________________

____________________________________________________________________________________________
137                                                                                                                                    Принципы скважинного прибора MRIL           Глава 5

объединяют или суммируют данные от нескольких измерений. Число эхо-сигналов

необходимое для выполнения измерений с заданной точностью и, соответственно

улучшенным отношением сигнал-шум, называется скользящим средним (RA). Время

цикла (ТС) это время необходимое для выполнения измерений последовательностью

CPMG и время поляризации (или время задержки) до начала следующего CPMG. Как

показано на рисунке 5.6, для прибора, работающего на одной частоте, ТС может быть

рассчитанно по:

TC = TW + TE * NE (5.1)

Для прибора, работающего на одной частоте и движущегося со скоростью V, вертикальное

разрешение может быть оценено по:

VR = L + (TC * RA – TW) (5.2)

Уравнение 5.2, показывает, что:

� Для стационарных измерений (V = 0), вертикальное разрешение равно длинне

RF радио-антенны. Следовательно более короткая антенна дает лучшее

разрешение.

� Вертикальное разрешение снижается при возрастании скорости записи.

� Вертикальное разрешение снижается при возрастании времени эксперимента.

Время эксперимента, в основном состоит из времени поляризации TW.

� При увеличении количества суммированных эхо-сигналов, улучшается

соотношение сигнал-шум, но при этом снижается вертикальное разрешение.

Глубина исследования
Статичное поле, создаваемое магнитом прибора MRIL, является градиентным полем B0(r),

чья амплитуда зависит от радиального расстояния r от поверхности прибора.3  В

частности, B0(r) � 1/r2. Например, сила поля вдоль тонкого цилиндрического объема

диаметром 16 дюймов, располагающегося вокруг оси 6-дюймового прибора, составляет

около 155 Гаусс (см. рисунок 5.7).
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Градиентное поле B0 прибора MRIL уменьшается при удалении от его поверхности.

Поскольку Ларморовская частота пропорциональна B0 Ларморовская частота протонов

коллектора, так-же будет уменьшаться при удалении от зонда.

Следовательно, чтобы прибор MRIL мог проводить измерения в коллекторе на заданном

расстоянии, частота выбранного осцилляционного поля B1, должна соответствовать

Ларморовской частоте находящихся там протонов. На практике, выбирается узкая полоса

пропускания, чтобы объем исследований представлял собой тонкий цилиндрический слой.

На рисунке 5.8 в поперечном сечении показаны: собственно прибор MRIL, ствол

скважины, окружающая порода и объем исследования.4 Расположенный ниже график

показывает спад величины магнитного поля B0 (и, соответственно, уменьшение

Ларморовской частоты) при удалении от поверхности зонда. Таким образом, градиент

поля B0 и выбранная частота полосы пропускания B1 определяют диаметр и ширину

объема исследования прибора. Этот объем задан исключительно точно. Протоны по

обоим сторонам объема исследования будут поляризованы полем B0, но из-за

несоответствия собственной частоты прецессии и поля не будут повернуты полем B1.

Теоретически, глубина исследования возрастает при уменьшении частоты поля B1. На

практике, увеличение глубины исследования требует повышения мощности B1 для

разворота протонов на 90� и 180�. Кроме того, увеличение глубины исследования снижает

соотношение сигнал-шум. 

Благодаря радиальному характеру измерений, зонд MRIL должен располагаться по центру

скважины. Когда размывы ствола не попадают в зону исследований, они практически не

влияют на измерения, за исключением «нагрузки» бурового раствора на поле B1. Из-за

эффекта нагрузки, чтобы осуществить 90� поворот протонов находящихся в солоноватой

среде полю B1 нужно больше мощности, чем для протонов в среде с высоким

сопротивлением.
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V*(Ne * Te)

2 ’

2 ’

2 ’

1 2 3

Рисунок 5.5 (1) При движении прибора MRIL по стволу он поляризует часть окружающего вещества. Если скорость
записи равна V, а время поляризации TW, то прибор сдвинется на расстояние V*TW за время одной поляризации. (2)
Вслед за поляризацией генерируется цикл CPMG и производятся измерения эхо-сигналов. Если расстояние между
эхо-сигналами TE, а число сигналов NE, то за время записи, прибор сдвинется на расстояние V*(TE*NE). (3) После
окончания цикла CPMG начинается новый цикл поляризации/CPMG.
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V*TC*RA-TW

L

Vertical Resolution

Вертикальное разрешение

Рисунок 5.6  Вертикальное разрешение прибора MRIL равняется сумме длины антенны и производной от скорости записи,
времени цикла и скользящего среднего.



Каротаж ЯМР. Принципы и применение
____________________________________________________________________________________________

____________________________________________________________________________________________
141                                                                                                                                    Принципы скважинного прибора MRIL           Глава 5

Рисунок 5.7 Постоянный магнит прибора MRIL генерирует градиентное поле с напряженностью, уменьшающейся по
мере удаления от поверхности прибора.

r

Amplitude of B0(r)
f0(r)

Gradient field B0(r) is
approximately 175 gauss
and Larmor frequency f0(r) is
approximately 750 kHz
at this shell

Wellbore

Permanent magnetic mandrel

Direction of B0(r)

Ствол скважины

Амплитуда В0 (r)
f ( r )

Направление В0 (r)

Сердечник постоянного магнита

В этом цилиндре, градиент магнитного
поля В0 (r ), сотавляет примерно 175
Гаусс, а Ларморовская частота f ( r )
около 750 кГерц
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Диаметр прибора

Порода

Ствол скважины

БР

Магнит

Антенна

B 0 (r)B 0 (r)

Объем исследования

Ширина импулься
Диаметр исследования

Мощность слоя

Значение частоты

Рисунок 5.8 Диаметр и толщина цилиндра объема исследования скважинного прибора MRIL определяется градиентом
постоянного магнитного поля В0 и частотой осцилирующего кольца поля В1.
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Если участок рызмыва попадает в зону исследования, то флюиды находящиеся в стволе

скважины начинают сказываться на измерениях. Иногда де-централизованное положение

прибора приводит к записи части сигнала от бурового раствора. В обоих ситуациях

значения измеренной MRIL эффективной пористости (MPHI) и суммарного объема

связанной воды (BVI) оказываются сильно завышенными. Это происходит потому, что (1)

жидкость в стволе скважины содержит много протонов, и (2) времена релаксации

протонов в буровом растворе очень быстрые из-за большой удельной поверхности

глинистых частиц. В большинстве случаев, эффекты влияния флюидов ствола скважины

на регистрацию MRIL легко обнаружить на каротажных материалах, особенно при

наличии данных кавернометрии.

Для измерений MRIL нет поправок за влияние флюидов ствола скважины или его

неоднородностей. Таким образом, если флюиды ствола оказывают влияние на

регистрируемый сигнал, данные MRIL больше не несут информации о породе и не могут

быть использованы для петрофизических анализов. 

Статичное поле зонда MRIL создается постоянным магнитом изготовленным из

ферромагнитных материалов, поэтому его магнетизация зависит от температуры.

Следовательно, (как показано на рисунке 5.9) мощность статичного магнитного поля и

градиента так-же зависят от температуры. При нагревании магнита, величина B0

уменьшается и для конкретной частоты B1, глубина исследования так-же снижается.

Поскольку температурные зависимости магнита MRIL хорошо изучены, то знание его

конкретной температуры и частоты B1 дает единственное значение глубины исследования

прибора.

Существует два вида зондов MRIL – с внешним диаметром 6 и 41\2 дюйма (или 47\8 для

серии Прайм), оба из которых могут работать на высоких частотах (около 750 кГц) и на

низких (около 600 кГц). Как показано на рисунке 5.10, при температуре в 200� F, для 6-

дюймового зонда глубина исследования составляет 141\2 и 161\2 дюйма, соответствено для

высокой и низкой частоты. Для зонда диаметром 41\2 дюйма, соответствующие глубины

исследования составят 10 и 101/2 дюймов. Для скважин обычного диаметра, (например
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пробуренных долотом 81\2 дюйма), глубина исследования в 16 дюймов соответствует зоне

расположенной на расстроянии 3-4 дюйма от стенки. Таким образом, измерения

производятся, в основном, в зоне проникновения. 

Многочастотные измерения и полоса частот радио импульсов
Согласно теории ЯМР, вклад в сигнал измеренный с помощью цикла CPMG вносят только

протоны прецессирующие с Ларморовской частотой. Ларморовская частота прямо

пропорциональна силе магнитного поля B0. Следовательно, при наличии градиентного

магнитного поля, для получения резонанса протонов в разных областях, могут

применяться импульсы различной частоты. Этот принцип успешно применялся для

изучения отдельных «срезов» как в медицинской визуализации магнитного резонанса, так

и в каротаже MRIL. Рисунки 5.11 и 5.12 иллюстрируют объемы исследования и

соответствующие им времена при многочастотных измерениях MRIL.5 

У протонов возбужденных радиочастотным импульсом MRIL, Ларморовская частота,

будет равна частоте импульса и они будут занимать строго определеный объем. Протоны,

находящиеся за пределами этого объема не будут испытывать влияния ридиоимпульсов и,

следовательно, будут менять свою поляризацию, в соответствии, с изменениями внешнего

магнитного поля.

Цикличная работа на различных частотах возбуждает протоны в разных цилиндрических

объемах исследования пространства и позволяет проводить измерения быстрее. Время

между частотами может быть равно времени эхо-сигнала, т.е. как правило, 0.5 сек., а

время между измерениями проводимыми на одной частоте должно соответствовать

времени повторной поляризации (TW), которое обычно находится в пределах 10 секунд.

Если частоты при многочастотном измерении имеют близкие значения, то

соответствующие им чувствительные объемы расположены очень близко друг-к-другу и

для практических целей, можно полагать, что они дают информацию от однородной

породы. 
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Соответственно, может быть увеличена скорость записи при одновременном сохранении

величины сигнал-шум. Например, если используются две частоты, число измерений

CPMG с полной поляризацией будет удвоено и, следовательно, скорость записи каротажа

можно увеличить в два раза без снижения уровня сигнал-шум.

При многочастотной записи, с набором F частот, время цикла и вертикальное разрешение

определяются как:

F
NETETWTC ��

� (5.3)

F
TW)-RATC(VLVR ��

�� (5.4)

r

Поверхность прибора

Стенка скважины

Возрастание температуры

Амплитуда В0 ( r )

f0 ( r )

f1

r1 r2

Рисунок 5.9 Сила магнитного поля В0 и полевого градиента зависят от температуры.
Следовательно, для поля f с частотой RF (радио-диапазона) глубина исследования будет зависеть от
температуры.
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Рисунок 5.10 Глубина исследования скважинного прибора MRIL зависит от температуры
постоянного магнита и частоты осцилляционного поля. Верхняя палетка рассчитана для прибора
диаметром 41/2 дюйма, а нижняя для 6- дюймового прибора.
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Поле B1 создается радиочастотным импульсом, центральная частота которого выбирается

соответствующей частоте чувствительного объема. Однако, сигнал от любого импульса

является не единичной частотой, а представлен набором частот определенным его

полосой пропускания. 

На рисунке 5.13 показано, что ширина (�r) чувствительного объема соответствующего

радиоимпульсу, определяется шириной полосы пропускания (�f) и силе градиента

магнитного поля (G):

G
r

�

�
��
�

f (5.5)

Частота 3

Порода
Частота 1

Стенка
скважины

БР

Поверхность
зонда

Магнит

АнтеннаNS

Частота 2

Рисунок 5.11 Зона исследования многочастотного прибора MRIL состоит из нескольких
близко расположенных  цилиндрических объемов. Радиусы отдельных цилиндров
уменьшаются при увеличении частоты.
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f1

f2

Рисунок 5.12 Если для измерения прибором MRIL используются две частоты (f 1 и  f 2), то они
сдвигаются по фазе друг относительно друга. Пока поляризуются протоны, с Ларморовской частотой  f1,
циклом CPMG регистрируют эхо сигналы от протонов с частотой f2.  Аналогичным образом, для
протонов с Ларморовской частотой  f1, регистрация происходит во время поляризации протонов с
частотой f2.

r

Амплитуда
f0(r)

f1

f2

B0

� r

Поверхность прибора

Стенка скважины

� f

r2r1

Рисунок 5.13 Импульсы, применяемые при записи каротажа MRIL, находятся в узком частотном
диапазоне и обладают одинаковыми амплитудами. Таким образом достигается исключительно
высокая частотная избирательность и, следовательно, хорошая избирательность объема исследования.
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Ширина полосы пропускания каждого из «мягких» импульсов MRIL примерно 12 кГц, а

градиент магнитного поля составляет около 17 Гаусс/см., таким образом ширина

чувствительного объема приблизительно равна 1 мм. Когда зонд MRIL работает в

двухчастотном режиме, чтобы избежать перекрытия двух измерений, разница в

центральных частотах должна быть больше или равна 12 кГц. Например, для прибора с

частотой 750 кГц, f1 устанавливается равной 756 кГц, и f2 = 744 кГц., следовательно, два

объема измерения не пересекаются.

Как показано на рисунке 5.14 прибор MRIL-Prime использует девять радиочастотных

сигналов, для создания девяти областей измерения 6,7 которые образуют цилиндрическую

полосу толщиной примерно в 1 дюйм. Принимаемые сигналы находятся в пяти частотных

интервалах. Высокочастотный интервал дает измерения меньшей глубинности и

используется для определения воды, связанной с глинистой компонентой. Для этой

задачи, прибор работает в моно-частотном режиме. Остальные восемь частот, выбранные

из четырех диапазонов (по две частоты на диапазон), могут использоваться для измерений

с двойным временем TW или двойным TE или стандартной регистрации Т2. 

Наведенный сигнал (реверберация)
Магнит зонда MRIL сделан из высокомагнитного керамического материала. При

прохождении тока осцилляции через окружающую магнит приемную антенну, в приборе

происходит электромеханический эффект, связанный с наведением дополнительного

сигнала, называемого реверберацией. На рисунке 5.15 показано, что взаимодействие

электрического тока I проходящего через обмотку антенны и поля B0 от постоянного

магнита, создают силу F и вращательный момент на поверхности зонда. Поскольку

величина тока не постоянна, момент так-же будет меняться, создавая вибрацию в приборе.

В свою очередь эта вибрация приводит к электическим шумам в антенне. Хотя этот «шум

реверберации» спадает весьма быстро, часть его может присутствовать во время

регистрации эхо-сигналов.
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Рисунок 5.15 Реверберация происходит во время измерений цикла CPMG, из-за момента вращения, связанного с
различиями в силе F, появляющейся в результате взаимодействия электротока I проходящего через катушку антенны и
магнитного поля  B0.
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Рисунок 5.14 Скважинный
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Амплитуда реверберации, как правило, велика и частично влияет на первый эхо-сигнал

(Эхо-1), из-за комбинации шумов создаваемых обоими импульсами : 90� и 180�. Опыт

работ показывает, что реверберация зависит от частоты и различна у разных приборов.

Шумы реверберации более широко распространены при коротких временах ТЕ, поскольку

для их затухания остается меньше времени.

Смещение фазы 90� импульса, как это происходит в циклах методики сдвига фаз

описанной в главе 2, эффективно снижает отклонения системы измерений и шумы

реверберации. При фазе 90� импульса равной 0�, амплитуды эхо-сигналов будут

положительны, а когда фаза 90� импульса равна 180�, амплитуды отрицательны. Однако

фаза 90� импульса не будет влиять ни на отклонения системы измерений, ни на шумы

реверберации. Таким образом, измерения от двух эхо-сигналов, с разницей фаз между 90�-

ми импульсами в 180� может быть представлена в следующем виде:

Для 90� импульса при фазе равной 0�: измеренные эхо-сигналы = сигнал +

реверберация + смещение; (5.6)

Для 90� импульса при фазе равной 180�: измеренные эхо-сигналы = -сигнал +

реверберация + смещение; (5.7)

Следовательно, вычитание двух измеренных эхо-сигналов и деление результата на 2 даёт

собственно величину истинного сигнала. Сложение эхо-сигналов и деление результата на

2 (т.е. осреднение измерений) даст информацию о собственно смещении и величине

шумов, что весьма полезно для контроля качества.

На рисунке 5.16 показано смещение времен импульсов применяемое в методике

противофазных пар (которая всегда используется при записи каротажа), если зонд MRIL

работает в двух-частотном режиме.
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Рисунок 5.17 Единичный эхо-сигнал зарегистрированный прибором MRIL,
показан на верхнем рисунке и обладает низким отношением сингал/шум.
Суммирование и осреднение восьми различных эхо-сигналов (показано на нижнем
рисунке) существенно улучшает это отношение.
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Отношение сигнал-помеха и скользящее среднее
Сигнал от ЯМР всегда очень слабый. В частности, величина амплитуды сигналов

регистрируемых зондом MRIL порядка нановольт (10-9 Вольт), что делает сложным их

отделение от шума. Таким образом, соотношение сигнал-шум весьма низкое. На верхней

диаграмме рисунка 5.17 показан эхо-сигнал прибора MRIL от единичной записи циклом

CPMG.

Если измерение повторяется, то амплитуда и положение у эхо-сигнала останется таким-

же, а у шума – нет, поскольку шумы распределяются случайно. Суммирование и

осреднение нескольких эхо-сигналов снижает уровень шума и улучшает соотношение

сигнал-шум. Скользящее среднее (RA, называемое так-же параметром осреднения),

представляет собой число отдельных эхо-сигналов необходимых для суммирования и

осреднения в эхо-спад, у которого будет заданная величина выигрыша в соотношении

сигнал-шум. Если число суммированных и осредненных эхо-сигналов обозначить через n

(т.е. принять RA = n), то полученное соотношение сигнал-шум (S/N) будет равно n

отдельных значений (S/N) умноженных между собой. 

При использовании методики противофазных пар и многочастотной записи, выбор

величины RA не является произвольным. Поскольку противофазные пары эхо-сигналов

связаны с каждой частотой, RA, в настоящее время, реализуется в виде четного значения

кратного числу частот используемых при регистрации эхо-сигналов. 

Активации
Активация – набор параметров, которые контролируют цикл импульсов прибора MRIL во

время записи каротажа. Таким образом, выбор активации определяет тип выполняемых

ЯМР-измерений. Параметры активации содержатся в таблице, которая передается с

поверхностного каротажного модуля на цифровой процессор (DSP) зонда MRIL.

Некоторые из параметров активаций могут быть легко изменены инженером-

каротажником, например число эхо-сигналов (NE), время поляризации (TW) и параметр
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осреднения (RA). Другие параметры “невидимы” они встроены в активации и не могут

быть изменены – например тип импульсов, число приращений или циклов шума и число

измерений В1. Кроме того, некоторые параметры могут быть изменены только при смене

типа активации, сюда включаются: время между эхо-сигналами (TE) и число

операционных частот (XF). 

Для скважинных приборов MRIL третьего поколения (MRIL-C/TP8) активации могут

выбираться на основании:

� Информации, которая должна быть получена во время измерений;

- эффективная пористость (использовать стандартную активацию Т2);

- типизация углеводородов при обработке разности спектров/анализе временной

составляющей (использовать активации с двойным TW);

- типизация углеводородов при обработке сдвига спектров/анализе диффузии

(использовать активации с двойным TЕ);

- общая (суммарная) пористость (использовать активацию суммарной

пористости);

� Условий записи

- раствор с высоким сопротивлением (использовать активацию с высоким Q, где

Q - фактор нагрузки на антенну);

- раствор со средним сопротивлением (использовать активацию со средним Q);

- раствор с низким сопротивлением (использовать активацию с низким Q);

� Числа операционных частот, используемых зондом

- одна частота (использовать активации применяющие одну частоту);

- две частоты (использовать активации применяющие две частоты);

- три частоты (использовать активации применяющие три частоты);

Каждая активация содержит несколько параметров, которые должны внимательно

выбираться для оптимизации точности получаемых данных без превышения пределов

возможности прибора. Некоторые из этих параметров:
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� Поляризация или время задержки (TW);

� Расстояние между эхо-сигналами (TE);

� Число эхо-сигналов (NE);

� Скользящее среднее (RA);

Наборы активаций зависят от типа зонда. Собственно процесс выбора нужной активации

для выполнения работ прибором MRIL является частью планирования, которое

рассматривается в главе 8.

Наличие у прибора MRIL-Praim (семейства Прайм) девяти частот, позволяет, за данный

период времени, получать больше данных, чем при использовании одной частоты. На

рисунке 5.18 показано применение этих частот7, которые выбраны из пяти диапазонов,

обозначенных как 0, 1, 2, 3 и 4. Частота, выбранная из диапазона 4, может быть

использована для измерения глинисто-связанной воды с активацией частичной

поляризации в режиме одной частоты. Частоты остальных четырех диапазонов могут быть

задействованы для использования различных наборов активаций, таких как стандартное

Т2, двойное время TW и/или двойное время TE, в двухчастотном режиме. На рисунке 5.19

показаны пять частотных диапазонов и их типичные средние частоты.

Рисунок 5.18 так-же показывает концепцию эффективности измерений [XF�(NE�TE)]/TW,

при предположении, что NE*TE = 500 мсек., и TW = 12 сек., где XF - число используемых

частот и NE*TE – время импульса. Измеренная таким образом эффективность составляет

всего 4% при измерениях с одной частотой и 36% при измерении на девяти частотах.

На рисунке 5.20 представлена упрощенная временная диаграмма для активации с двойным

временем TW для зонда MRIL-Prime. 6 Активация состоит из трех различных циклов

CPMG на различных операционных частотах:

� Для первой частоты, TE = 1.2 мсек., и TW = 12 сек.;

� Для второй частоты, TE = 1.2 мсек., и TW = 1 сек.;

� Для третьей частоты, TE = 0.6 мсек., и TW = 0.02 сек.;
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Рисунок 5.18 В скважинном приборе MRIL-Prime из пяти диапазонов выбирается
девять частот. При времени поляризации в 12,000 мсек. и времени межде импульсами в 5000
мсек., измерения на девяти частотах дают 36% эффективности; аналогичные измерения на
одной частоте дают 4%.
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Рисунок 5.19 Обычно средние частоты в пяти диапазонах MRIL составляют 590,
620, 650, 680 и 760 кГц.
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полоса
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3 A B
3 A B
2 A B
2 A B
1 A B
1 A B
0 A B
0 A B

X X X X

Условные
обозначения:

A CPMG цикл: TE=1.2 мсек, TW=12 сек, NE=400.

B CPMG цикл: TE=1.2 мсек, TW=1 сек, NE=400.

C CPMG цикл: TE=0.6 мсек, TW=0.02 сек, NE=10. (повторяется 24 раза)

X Передача данных

Цикл повторяется каждые 14 секунд. При скорости записи 1,000 футов/час (16.7

футов/мин.), производятся два измерения на фут для каждого TW равного 1 и 12 сек., в

диапазонах 3,2,1, и 0, и одно измерение на фут для времени TW равного 0.6 сек., в

четвертом диапазоне.

6-дюймовые зонды MRIL-Prime снабжены дополнительной парой магнитов

расположенных над- и под основным магнитом, для достижения ускоренной пре-

поляризации с помощью их более сильных полей.6 Основной магнит в три раза длиннее

антенны и позволяет осуществить полное восстановление после пре-поляризации. При

стационарных измерениях или медленном режиме записи, эти магниты не дают никаких

Рисунок 5.20 Временная диаграмма активации с двойным TW для
прибора MRIL-Prime показывает повторное использование трех различных
циклов  CPMG; два из них – на различных операционных частотах.
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преимуществ, однако при нормальной или повышенной скорости записи, они успешно

сокращают время необходимое для полной поляризации наполовину (см. рисунок 5.21).

Конфигурация прибора
В своей базисной конфигурации показанной на рисунке 5.22, прибор MRIL состоит из

магнитной оболочки диаметром 4½, 47/8 или 6 дюймов, блока электроники и одной или

двух аккумуляторных батарей (конденсаторов). Флюидный экран, центраторы и

отклонители являются необязательными элементами, но рекомендуются к использованию

и должны выбираться исходя из диаметра скважины.

Применение флюидного экрана уменьшает эффект нагрузки от бурового раствора и

увеличивает соотношение сигнал-шум. Центраторы и отклонители помогают расположить

прибор точно по центру ствола скважины, кроме того, отклоняющие элементы могут

защитить стекловолоконную оболочку зонда предохраняя её от соприкасаний с обсадной

колонной/стенкой скважины.

Приборы MRIL полностью совместимы с остальными зондами записи в окрытом стволе,

выпускаемыми компанией Халлибуртон, такими как индукционный зонд высокого

разрешения (HRAI), микроимеджер сопротивления (EMI) и круговой акустический

сканнер (CAST-V).
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Рисунок 5.21 Три кривые на верхнем графике показывают как быстро может быть достигнута
магнетизация без усиления пре-поляризацией. Кривые соответствуют временам Т1 = 1, 2 и 4 сек.
Если можно допустить 5% недопроляризацию, то для поляризации самой медленной компонеты,
потребуется 12 секунд. При использовании пре-поляризации, (как показано на нижнем рисунке,
для 6-дюймового зонда MRIL-Prime) магнетизация может быть достигнута значительно быстрее.
Рассчеты сделаны для критической скорости записи в 24 фута/мин. Предполагались аналогичные
значения времени Т1 (1, 2 и 4 сек.); после 6 секунд все компоненты стабилизировались в пределах
5% разброса от номинального значения магнетизации.
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Рисунок 5.22
Базисная конфигурация
скважинного прибора MRIL
состоит из магнита, блока
электроники и одного или
двух энергетических блоков
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Данные каротажа ЯМР могут

анализироваться независимо или совместно с

другими скважинными методами. Когда

материалы ЯМР интерпретируются

независимо, мы можем получать пористость,

проницаемость, равно как и исчерпывающую

информацию о типах и распределении

флюидов в зоне проникновения. Для

обработки собственно данных MRIL

разработаны две компьютерные модели –

анализа временной составляющей (TDA) и

анализа диффузии (DIFAN). Еще одна

модель: метод усиления диффузии (EDM)

может использоваться непосредственно во

время записи, он дает ценную информацию

для выявления вязкой нефти. В данной главе

рассматривается полное описание моделей и

их применение.

Анализ временной составляющей 

Концепция
Анализ временной составляющей (TDA)1-3 опирается на тот факт, что различные флюиды

обладают различными скоростями поляризации или различным временами релаксации Т1.

Значение Т1 для газов и легких нефтей (вязкость менее 5 сПуаз), обычно значительно

больше, чем Т1 воды. Анализ временной составляющей позволяет выполнять :

� определение типов флюидов в промытой зоне;

____________________________
   Глава  6

Результаты
интерпретации

собственно данных
MRIL

_____________________________________
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� исправления пористости MRIL в газоносных коллекторах (без введения такой

поправки результаты MRIL недооценивают пористость из-за более длинного Т1

и низкого значения углеводородного индекса в газах);

� исправления пористости MRIL в коллекторах с легкими нефтями;

� полный анализ содержания флюидов в зоне проникновения на основе

исключительно данных MRIL;

Принцип
Метод разницы спектров

TDA явился побочным продуктом метода разницы спектров (DSM)4-6, который был

разработан как первое применение каротажа с двойным временем TW. Методика DSM, в

основном, используется для качественной оценки присутствия газа в породе. Принцип

методики показан на рисунке 6.1.

Анализ временной составляющей

При TDA производиться вычитание в обычных временах, вместо распределений Т2. По

сравнению с DSM метод TDA обладает двумя существенными преимуществами.

� Разница между двумя эхо-сигналами рассчитывается во временной

составляющей, поэтому она более заметна. Полученная разница, затем

пересчитывается в распределение Т2.

� TDA лучше обеспечивает введение поправок за недополяризованный водород и

за влияние углеводородного индекса.

Рисунок 6.2 иллюстрирует принцип действия TDA. Полное математическое решение

технологии анализа временной составляющей представлено в разделе Дополнение.



                                                                                                                                         Halliburton Energy Services
_____________________________________________________________________________________________

_____________________________________________________________________________________________
Глава 6                                                                                           Результаты интерпретации собственно данных MRIL    166

t
T2

Полевые данные: эхо-сигнал В (короткое TW)

M(t)

P(i)
A - B во временном домене =
Спектр разности T2

Полевые данные: эхо-сигнал А (длинное TW)

Результат обработки
распределение T2  углеводородов

Результат обработки
T2 распределение В

Результат обработки
T2 распределение А

T2

P(i)

P(i)

Нефть

Газ

t

T2

Рисунок 6.1  В методе разности
спектров (DSM) эхо-сигналы с
длинным и коротким TW
сначала конвертируются в
распределения Т2; затем
полученные спектры
вычитаются друг-из-друга.
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Рисунок 6.2  В методе
анализа временного спектра
(TDA), эхо-сигналы с
длинным и коротким TW
сначала вычитаются друг-из-
друга, а затем полученная
разница конвертируется в
распределения Т2.
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 Регистрация данных
TDA записывают с активацией двойного времени TW. При такой записи каротажа

регистрируют две кривые ЯМР-спада, соответственно используя длинное и короткое

время TW при одинаковых TE. Типичная пара значений TW = 1 и 8 сек. при TE = 0.9 или

1.2 мсек. В главе 5 рассматриваются некоторые из пар TWS/TWL при записи двойного

времени TW.

Рисунок 6.3 иллюстрирует принцип записи каротажа с активацией двойного времени TW.

На верхней и средней частях рисунка показаны поляризация и регистрация эхо-сигналов в

режиме двойной частоты, соответственно, при частотах f1 и f2. На этом рисунке эхо-сигнал

с коротким TW был записан в «оболочке» f1 или объеме чувствительности f1, в то время

как порода была поляризована в «оболочке» f2. Затем, эхо-сигнал с длинным TW был

записан в «оболочке» f2. Короткое время TW выбирается таким, чтобы протоны воды были

полностью поляризованы, а протоны и газа и легких нефтей были поляризованы только

частично. Во время цикла с длинным TW все протоны воды полностью поляризуюся, а

протоны газа и легких нефтей поляризуются более полно, чем при цикле с коротким TW.

Полная поляризация воды в обоих случаях подразумевает, что разница между

измерениями при коротком и TW длинном TW получена от сигнала от газа или легой

нефти. В нижней части рисунка 6.3 показано распределение Т2 для обеих эхо-сигналов.

Результаты записи с двойным временем TW в скважине состоят из: распределений Т2 для

длинного и короткого TW, кажущегося MPHI, BVI и MFFI из обоих эхо-сигналов -

короткого и длинного TW, и MPERM из измерений с длинным TW. На рисунке 6.4 показан

пример каротажной диаграммы с двойным временем задержки TW. Сравнивая BVI и MFFI

из обоих измерений - с длинным и коротким TW, может быть на вскидку получена ценная

информация. И у газа и у легкой нефти длинное время Т1, поэтому им требуется более

длинное время TW для полной поляризации. В случае присутствия в разрезе легкой нефти,

MFFI из длинного TW будет больше, чем из короткого TW. В газоносном разрезе BVI и

MFFI из длинного TW будут больше, чем из короткого TW.
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Рисунок 6.3  При записи с двойным временем TW регистрируются частично поляризованные эхо-сигналы с
коротким TW  (верх) и полностью поляризованные сигналы с длинным TW (середина). Соответствующие
распределения Т2 спектров показаны на нижнем слайде.
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Рисунок 6.4 На фрагменте каротажной диаграммы показаны полевые
результаты записи с двойным временем TW. В первую колонку помещена
кривая стандартного ГК и данные записи ЯМР с длинным TW в
инкрементном формате; во вторую колонку – проницаемость MPERM. В
третей колонке представлено распределение Т2 с длинным TW; в четвертой -
распределение Т2 с коротким TW. В пятой и шестой колонках показаны
кривые MPHI и BVI полученные по данным с длинным TW и коротким TW,
соответственно.
_______________________________________________________________________
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Применение
Пример 1

Две скважины из Египта иллюстрируют важность применения TDA при решении проблем,

связанных с недостаточной поляризацией легких углеводородов, и скорректированном

измерении пористости породы. На рассматриваемом месторождении компания-оператор

использовала РНО с легкой нефтью, у которой величина Т1 составляла около 5 секунд.

Изначально эффект от фильтрата РНО не учитывался, что привело при интерпретации к

заниженной оценке пористости. На рисунке 6.5 показано сравнение пористости по данным

керна и MRIL в первой скважине и отчетливо видно занижение значений полученных по

ЯМР. Аналогичный эффект, наблюдаемый при сравнении пористости с нейтрон-

плотностного кросс-плота и MRIL, показан на рисунке 6.6. 

Во второй скважине, для введения поправок за влияние фильтрата с легкой нефтью,

которая в зоне проникновения привела к недополяризации ядер углеводорода (и сказалась

на показаниях MRIL), применялся TDA. На рисунке 6.7 сравнивается пористость MPHI

определенная методом TDA с ЯМР пористостью по керну и с нейтрон-плотностной

пористостью - на рисунке 6.8. Графики наглядно показывают, что обработка методом TDA

позволяет ввести поправку в MPHI и разрешить проблему наблюдаемую в первой

скважине.

Пример 2

На рисунке 6.9 показан результат применения обработки TDA к данным MRIL,

избраженным на рисунке 6.4. Используя эту методику, только по анализу данных MRIL,

можно полностью судить о пористости, проницаемости и насыщении флюидами зоны

проникновения. Согласно результатам TDA, в интервале хх685-хх870 футов, расположен

исключительно хороший продуктивный пласт не содержащий свободной воды, несмотря

на низкие показания метода сопротивлений в интервале хх715-хх870 футов. Водоносный

пласт расположен в интервале хх870-хх880 футов.
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Рисунок 6.5 Приведено сравнение пористости определенной по керну и MPHI. Пример взят из сважины
в Египте пробуренной на легком РНО и показывает, что MPHI определенная без применения TDA
недооценивает истинне значение пористости.

Рисунок 6.6 Пример взят из той-же сважины и показывает, что MPHI определенная без применения TDA
недооценивает истинное значение пористости, определенное по нейтрон-потностному кросс-плоту.
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Рисунок 6.7 Во второй скважине (Египет, пробуренной на легком РНО) пористость MPHI
определенная методом TDA сравнивается с пористостью по керну.

Рисунок 6.8 В той-же скважине, что и на рисунке 6.7 пористость MPHI определенная методом
TDA сравнивается с данными нейтрон-плотностного кроссплота.
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Рисунок 6.9 Обработка TDA была применена к данным MRIL,
показанным на рисунке 6.4. В первую колонку помещена кривая
стандартного ГК и данные распределения Т2 с длинным TW; во вторую
колонку – проницаемость MPERM и сопротивление (большой и малой
глубинности). В третьей колонке волновая картина Т2 с длинным TW; в
четвертой колонке показан в спектр разности. В пятую колонку сведены
результаты TDA: газо- и нефтенасыщенность, BVI и эффективная
водонасыщенность.
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Как обсуждалось ранее, данные полученные методом ЯМР всегда содержат шум,

приводящий к расширению спектра. Эффекты от этого расширения могут существенно

искажать результаты обработки DSM, в случае если разница между

углеводородосодержащими пористостями (��h)2 полученными при разных эхо-сигналах

невелика. Сигнал может распределяться по соседним зонам дискретного распределения

неравномерно, а разница спектров не содержать видимой информации об углеводородах. 

Пример 3

Материалы газоносной скважины в Мексиканском заливе пробуренной на РНО,

послужили примером комплексной обработки методами DSM и TDA.3 Комплекс ГИС в

этой скважине состоял из измеренных во время бурения (LWD) радиоактивности (ГК),

сопротивления, нейтронного метода и каротажа ЯМР выполненного прибором MRIL на

кабеле. Запись MRIL выполнялась с активизацией двойного времени TW со значениями 1 и

8 секунд. Полученные материалы обрабатывались методом DSM: сначала для обоих

наборов данных были рассчитаны распределения Т2, а затем распределение с коротким

TW вычли из распределения Т2 с длинным TW. Результаты обработки показаны на рисунке

6.10. Данные LWD: ГК и сопротивления показаны, соответственно, в первой и второй

колонках, а спектр разностей – в третьей. Несмотря на то, что выбранная зона содержит

газ со временем Т2 = 60 мсек., спектр разностей не показывет его наличия. На спектр

разностей доминирующее воздействие оказывает сигнал от фильтрата РНО (правая часть

третьей колонки), со значением Т2 = 375 мсек. В окне значений BVI (Т2 < 33 мсек) для

спектра разностей, значительная часть сигнала в выбранном интервале интерпретируется

как шум.

Затем, для количественного анализа материалов скважины, был использован метод TDA.

Поскольку этот метод анализирует зону проникновения, на него оказывают влияние

четыре типа флюидов, присутствоваших во время выполнения записи прибором MRIL.

Как показано на рисунке 6.11 этими флюидами были: пластовый газ (закрашен красным),

фильтрат РНО (светло-зеленый), свободная вода (темно-синий) и вода, связанная с

глинистой компонентой (светло-голубой). Значения времен Т2 и Т1 для флюидов в зоне
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проникновения рассчитанные по методике TDA показаны, соответственно, во второй и

третьей колонках. Отметим, что во второй колонке показан сигнал от газа со временем Т2

около 60 мсек. и сигнал от РНО со временем Т2 около 375 мсек. Положение контактов

ГНК и ВНК, отчетливо видны в нижней половине на материалах TDA, но совершенно не

заметны на данных DSM на рисунке 6.9.

Анализ диффузии
Принцип

Возможность анализа диффузии зависит от контраста её значений между пластовыми

флюидами и позволяет давать количественную характеристику содержания нефтей с

вязкостью от 0.5 до 35 сПуаз, находящихся при температуре выше 200 F и давлении более

2,000 psi. Как рассматривалось в главе 3, диффузионная релаксация происходит в

результате градиента магнитного поля прибора MRIL. Регистрируемое время Т2 флюидов

изменяется с изменением времени между эхо-сигналами ТЕ.7 Величина Т2 зависит от

градиента магнитного поля G, гироскопической постоянной ядра водорода �, времени

между эхо-сигналами ТЕ и кажущегося коэффициэнта диффузии Da согласно формуле:

� �� �12/11 2

int22
TEGCDTT a ��� (6.1)

где T2int - истинное время релаксации при градиенте магнитного поля ноль. C –

учитывает суммарное влияние ограниченной диффузии и динамики спина связанной со

смешиванием прямых и наведенных эхо-сигналов в градиентном поле.8 Для прибора MRIL

C=1.08. Для конкретного случая, все параметры уравнения (6.1) – константы, за

исключением времени между эхо-сигналами ТЕ. Уравнение (6.1) показывает, что

увеличение времени между эхо-сигналами с 1.2 мсек. до большего значения приведет к

более низкому Т2. 
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ГК Сопротивление Разностный спектр
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Рисунок 6.10 Обработка DSM была применена к данным MRIL,
полученным в газоносном коллекторе, в скважине пробуренной на РНО
(Мексиканский залив). В первой  и второй колонках показаны данные LWD
(каротаж во время бурения) - ГК и сопротивление, соответственно. В третьей
колоке - разностный спектр, в котором на длинных временах T2 виден сигнал от
нефти (фильтрата). По этим данным ГВК выделить было нельзя.
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Рисунок 6.11 На данных MRIL показанных на рисунке 6.10 была проведена обработка TDA. В
первой колонке показаны объемы порового пространства заполненного газом (красный), фильтратом
РНО и/или пластовой нефтью (зеленый), подвижной водой (темно-синий) и капиллярно-связанной
водой (светло-синий), полученные после количественного анализа методом TDA. Во второй и третьей
колонках показаны, соответственно, T2 и T1 значения для газа и легкой нефти рассчитанные по TDA. В
нижней части второй колонки выделяются ВНК и ГНК, а верхняя часть показывает присутствие
нефти и газа.

1 3100

PHIE T2(мсек) T1(сек)

30 0 10
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Регистрация данных
Для осуществления анализа диффузии необходимо записать эхо-сигналы с двойной ТЕ-

активацией.9 Во время записи регистрируются данные CPMG эхо-сигналов с короткими и

длинными временами ТЕ и одинаковым TW. Типичная пара значений времен ТЕ – 1.2 и 4.8

мсек. Для полной поляризации флюида TW должно быть по крайней мере в три раза

больше максимального значения Т1 всех поровых флюдов. 

Двойная активизация позволяет использовать принцип количественного измерения

диффузии для разделения воды и нефтей средней вязкости. Кажущийся коэффициэнт

диффузии Da нефти должен быть значительно меньше, чем у воды, и на практике,

вязкость нефти должна быть в пределах от 0.5 до 35 сПуаз. Сигналы нефти отличают от

сигналов воды, посредством сравнения CPMG эхо-сигналов полученных от коротких (ТЕS)

и длинных (ТЕL) времен.

Рисунок 6.12 иллюстрирует принцип записи каротажа с двойным временем ТЕ. В верхней

и средней секциях показаны поляризаци при регистрации эхо-сигналов в режиме двух

частот, соответственно, с частотами f1 и f2. Данные в слое f1 записываются, пока слой f2

ре-поляризуется. Затем происходит обратный процесс. На данном рисунке запись эхо-

сигналов с длинным временем ТЕ производится в слое f1, а с коротким временем ТЕ - в

слое f2. Для измерений с длинным ТЕ, спад сигнала от воды происходит значительно

быстрее, чем от нефти со средней вязкостью. Если аккуратно подобрать длинное время

ТЕ, то сигналы от воды и нефти можно будет разделить. Для измерений с коротким ТЕ,

распределение времени Т2 от воды перекрывает большую часть Т2 от нефти. Нижняя

секция рисунка показывает распределение Т2 для обоих эхо-сигналов.

На скважине, результы записи каротажа с двойным временем ТЕ включают два

распределения времени Т2, MPHI и BVI от обоих измерений – длинным и коротким ТЕ и

MPERM от измерений с коротким ТЕ, как показано на рисунке 6.13. (Данные,

представленные на нем рассчитаны при стандартных параметрах: граничном значении

Т2cutoff = 33 мсек., C = 10, где C – коэффициэнт из модели Коатеса. Последующие

результаты могут отличаться от полевой обработки, из-за уточнения отдельных
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параметров измерения и дополнительных предположений в рассчетах. Например, оба

пераметра: время поляризации TW и углеводородный индекс HI будут влиять на величины

MPHI и BVI. В дополнение, Т2cutoff влияет на  BVI и MFFI. На MPERM влияют те-же

факторы, что и на BVI, и коэффициэнт из модели Коатеса. В результате предварительного

анализа MPHI и BVI, и сравнения распределения времен Т2, полученных при коротких и

длинных TW, может быть получена весьма ценная оценочная информация. У газа высокая

диффузивность, у вязких нефтей – низкая, а вязкость воды занимает промежуточное

положение. Следовательно, у газа, воды и вязких нефтей будут различные сдвиги в

распределении времени Т2, при коротких и длинных временах ТЕ измерений MRIL. 

Метод сдвига спектра МСС (SSM)
Метод сдвига спектра - МСС (SSM)4 является методикой качественной оценки изменений

времен Т2 пластовых флюидов и, соответственно, их Т2 распределения при различных

значениях задержки между эхо-сигналами. Предположим, что мы работаем с пластом, в

котором присутствует свободная вода и нефть средней вязкости. Коэффициэнт диффузии

у воды в десять раз больше, чем у средней нефти. При увеличении времени TE, процессы

диффузии уменьшают Т2 водной фазы сильнее, чем Т2 углеводородов. Могут быть

подобраны такие значения длинных- и коротких времен TE (TEL, и TES), что уменьшение

значений Т2 воды и нефти измеренное при TEL, по сравнению со сходным уменьшением

померенным при TES, может использоваться для разделения сигналов от водной и

нефтяной составляющих. Сравнение распределений Т2, полученных с временами TEL, и

TES, показывает относительные сдвиги от различия вязкости, в значениях Т2 воды и нефти,

которые рассматривались в главах 1 и 4.
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Рисунок 6.12 При записи с двойным временем TE регистрируются два полностью
поляризованных эхо-сигнала один - с длинным TE (верх), и другой с коротким TE (середина).
Соответствующие распределения Т2 спектров, которые могут применяться для разделения нефти и
воды  показаны на нижнем слайде.
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Рисунок 6.13  На этом фрагменте каротажной диаграммы показаны
результаты полевой обработки данных метода двойного TE. В первой
колонке представлены кривые стандартного ГК и данные инкрементного
распределения Т2, полученные из эхо-сигналов с коротким TE и
используемые для корреляции. Во второй колонке – рассчитанная кривая
MPERM. В третьей и четвертой колонках – волновое распределение Т2,
соответственно при коротких и длинных TE. В пятой и шестой колонках
кривые MPHI и BVI, полученные, соответственно, при коротких и длинных
временах TE.
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DIFAN: Количественный анализ диффузионной составляющей
DIFAN - Это эмпирическая модель для количественной интерпретации данных диффузии,

успешно применяемая на многих месторождениях Мира. Она была разработана для

случаев, когда для использования TDA был недостаточный контраст в значениях Т1, или

недостаточный контраст в диффузии, чтобы применять более прямолинейный подход –

EDM или запись с двойным TЕ. Метод использует разницу в сдвиге значений Т2 в поровых

флюидах, возникающую в результате различия значений диффузии. Его основным

результатом является количественная оценка водо- и углеводородо-насыщенной

пористости. Для углеводородов с очень низкими значениями вязкости (т.е. легких нефтей

и конденсатов) не рекомендуется применять DIFAN, поскольку разница их диффузий с

диффузией пластовой воды слишком мала. Для разрезов с высоковязкими (тяжелыми)

нефтями метод так-же не рекомендуется к использованию, из-за незначительной разности

в значениях диффузии связанной воды и собственно «мертвой» нефти (Т2int).

В модели DIFAN из двух последовательностей эхо-сигналов записанных при различных

временах TЕ генерируется два распределения Т2. Кажущееся среднее геометрическое

рассчитывается для области, связанной со свободными флюидами, для времени Т2 при

длинных и коротких временах TЕ и обозначается соответственно Т2L и Т2S. Полученные

средние значения связаны с диффузей следующими соотношениями:

� �� �12/11 2

int22
ESa

S

TGCD
TT

��� (6.2)

� �� �12/11 2

int22
ELa

L

TGCD
TT

��� (6.3)

где:

Т2int = собственное время релаксации порового флюида (1/Т2int=1/Т2B+1/Т2S);

Da = коэффициент кажущейся диффузии флюида;

C = константа, учитывающая суммарный эффект ограниченной диффузии и

динамики спинов, связанной со смешиванием собственных и наведенных

эхо-сигналов в градиентном поле (С = 1.08 для приборов MRIL);
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Поскольку величины Т2L, Т2S, TЕ L, TЕ S, G, �, и С известны, оба уравнения могут быть

разрешены одновременно для получения значений Т2int и Da. Решение уравнений затем

используется для построения кросс-плота между параметрами 1/Т2int и Da/Dw, как показано

на рисунке 6.14., из которого, для дальнейших рассчетов водонасыщенности Sw,

определяют значение Swa.

Перед тем как значения 1/Т2int и Da/Dw наносятся на кросс-плот, проводятся линии

соответствующие Swa = 100% и Swa = 0%. Для этого необходимо знать величины Dw, Doil и

Т2bulk,oil. 

Линия Swa = 100% образует верхнюю границу распространения данных в водонасыщенном

коллекторе. Эта линия проходит через точку объемной воды (Da/Dw =1). Эмпирически

полученные результаты, помещают пересечение 1/Т2int с этой линией на отметку 0.04

мсек.-1, или Т2int = 25мсек. Точное положение этого пересечения не является критически

важным для большинства продуктивных коллекторов, поскольку изменения в их

насыщении, в основном, отражаются на Da/Dw.

Для определения линии Swa = 0%, продуктивный колектор считается содержащим только

остаточную воду, т.е. весь подвижный флюид – нефть. В этом случае, в пластовых

условиях, Т2int  равно Т2bulk,oil, а Da равно Doil. Таким образом, точка с координатами

(Doil/Dw : 1/Т2bulk,oil) будет располагаться на линии Swa = 0% и эта линия должна быть

параллельна линии Swa = 100%.

Для определения текущих величин Swa во всем диапазоне, область между граничными

значениями Swa = 0%, и Swa = 100% равномерно разбивается параллельными линиями.

После того как для заданной глубины рассчитаны Т2int  и Da, задается точка с

координатами (Da/Dw : 1/Т2int), а Swa определяется по кросс-плоту. В дальнейшем Sw

рассчитывается по: 

BVIFFI
BVIFFISS wa

w
�

�
� (6.4)
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Суммируя вышеизложенное, можно сказать, что процесс анализа диффузионной

составляющей поровых флюдов по модели DIFAN выполняется следующим образом:

1. записывают две серии эхо-сигналов с активизацией двойного времени ТЕ;

2. оценивают объемные свойства (Т2int и Da) для нефти и воды, в пластовых

условиях (т.е. температура-давление-вязкость);

3. строят кросс-плот 1/Т2int – Da/Dw;

4. для области свободных флюидов, рассчитывают средние геометрические

значения распределения Т2 при длинных и коротких временах ТЕ;

5. рассчитывают Т2int и Da (по уравнениям 6.2 и 6.3);

6. по кросс-плоту 1/Т2int – Da/Dw оценивают Swa;

7. и, используют Swa для расчета истинной Swa водонасыщенности в эффективной

пористости породы;

На рисунке 6.15 приводиться один из многих примеров успешного применения методики

DIFAN в Индонезии. Данные MRIL были записаны с активизацией двойного времени ТЕ

при TES = 1.2 мсек. и TEL = 4.8 мсек. Результаты обработки DIFAN в колонке 5,

показывают, что в интервалах Х95 – Х20 футов и ХХ05 – ХХ00 футов есть углеводороды

и так-же присутствует значительное количество свободной воды. Результаты

последующей добычи подтвердили эту интерпретацию.

Метод усиления диффузии (EDM).
Метод усиления диффузии (EDM) позволяет выделять и количественно характеризовать

нефти с вязкостью в пределах от 1 до 50 сантиПуаз. Для разделения флюидов метод

использует контраст в значениях их диффузий. Применение правильно выбранных времен

ТЕ при регистрации эхо-сигналов, позволяет усилить эффект различия в диффузии и

разделить нефть и воду на распределении времени Т2. В методе усиления диффузии

используется цикл CPMG со следующими параметрами активизации:

� стандартная запись Т2 с длинным ТЕ ;

� запись с двойным ТЕ и одинарным длинным TW ;

� запись с двойным TW и одинарным длинным ТЕ ;
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Рисунок 6.15  На этом фрагменте каротажной диаграммы показаны результаты
применения DIFAN к данным MRIL полученным в Индонезии. В первой колонке
помещены кривые ГК, ПС и кавернограмма. Во второй – сопротивление (большой, малой
и средней глубинности) и проницаемость MRIL. В третьей и четвертой колонках –
волновое распределение Т2 с длинным и коротким ТЕ, соответственно. В пятой колонке –
окончательные результаты рассчетов по DIFAN .
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Понимание принципа EDM всецело зависит от понимания роли факторов влияющих на

скорость релаксации воды и нефти в поровом пространстве породы. Если записаны две

последовательности эхо-сигналов при двойном ТЕ, то полученные при TES и TEL

распределения Т2 будут содержать сигналы и от нефти  и от воды. Время TEL может быть

задано таким образом, что сигналы от нефти и от воды будут разделены на распределении

TEL Т2 и, таким образом, обеспечат оперативную оценку результатов EDM на скважине.

Как упоминалось в главе 3, скорости релаксации поровых флюидов наблюдаемые при

измерениях циклом CPMG связаны с объемным, поверхностным и диффузионным

механизмами релаксации: 

diffusionsurfacebulkCPMG TTTT 2222 1111 ��� (6.5)

Величина Т2 померянная при CPMG меньше, чем Т2 рассчитанная для любого из этих трех

механизмов. Поскольку время T2bulk всегда значительно больше, чем T2surface и T2diffusion для

практических рассчетов им можно принебречь. Если время T2surface меньше, чем T2diffusion то

в наблюдаемой релаксации будет преобладать поверхностная компонента, в противном

случае доминирует диффузионная составляющая.

С эффектом диффузии можно немного манипулировать выбирая параметры регистрации

прибора MRIL. В частности, сила градиента манитного поля G, зависит от операционной

частоты и типа прибора, а так-же от времени между эхо-сигналами ТЕ, заданного

инженером-каротажником на скважине. G и ТЕ могут быть подобраны таким образом, что

в релаксации воды будет преобладать механизм диффузии и, следовательно, верхний

лимит времени Т2 для воды в поровом пространстве будет Т2diffusion,w. Это предельное

значение обозначается Т2DW, и определяется по:

� �� �2
2 12 TEGCDT wDW �� (6.6)

Следовательно, Т2DW составляет абсолютную верхнюю границу для измеренных значений

Т2 воды, т.е. все времена спада связанные с сигналом от воды будут меньше или равны

величине Т2DW.
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Время Т2 нефти в гидрофильном коллекторе определяется двумя составляющими

релаксации: объемной и диффузной: 

oildiffusionoilbulkoil TTT ,2,22 111 �� (6.7)

Выбор параметров G и ТЕ может быть дальше переработано так, чтобы:

Т2DW << минимум {Т2oil, ожидаемых значений в пласте} (6.8)

В реальности из-за наличия помех G и ТЕ выбираются так, чтобы:

2Т2DW << минимум {Т2oil, ожидаемых значений в пласте} (6.9)

Следовательно, наличие сигнала в распределении Т2 с временами длиннее чем Т2DW,

однозначно указывает на присутствие нефти в пласте. На рисунке 6.16 приводится пример

такой интерпретации для выделения продуктивного коллектора по данным EDM.

Метод EDM достаточно прост в применении. Контраст значений Т1 не является

обязательным условием и в зависимости от ЯМР-свойств флюидов и задач, обработка

может происходить как в распределениях Т2, так и во временной области. Если задачей

является разделение продуктивных и непродуктивных коллекторов, то достаточно

применение единичного измерения CPMG с длинным ТW (для полной поляризации

флюидов) и с длинным ТЕ (для усиления диффузии). Если цель состоит в количественной

характеристике распределения флюидов в продуктивном пласте, то необходима запись

данных с двойным временем ТЕ. Измерения с коротким временем ТЕ дадут возможность

точно рассчитать MPHI и BVI. Если в рассматриваемой зоне не ожидается контраста

значений Т2 достаточного для разделения на нефть и воду, то необходимо применение

записи с двойным временем ТW и одинарным, длинным ТЕ, которая позволит провести

обработку временного домена (TDA). Планирование работ ЯМР является критическим для

успеха метода EDM. 
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Рисунок 6.16 На фрагменте каротажной диаграммы показаны волновые
распределения Т2 при ТЕ = 1.2, 3.6 и 4.8 мсек., соответственно в третьей, четвертой и
пятой колонке. На результатах EDM в четвертой и пятой колонках, существенная
энергия сигнала справа от линии T2DW показывает на очевидные нефтеносные зоны.
Кроме того, в пятой колонке, в результате увеличения ТЕ отмечается возрастание
разделения на распределении Т2.
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Приложение: математическая модель11 (TDA)
Понимание того как TDA определяет газо- и нефтенасыщенную пористость из разности

спектров основано на материалах представленных в главе 3. В частности, уравнение 3.17

показывает, что амплитуда эхо-сигнала полученного при последовательности CPMG, для

гидрофильной породы-коллектора содержащей в свободном состоянии воду, нефть и газ,

при условии, что и у нефти и у газа одно значение Т2 может быть представлена в виде

уравнения 6-А.1.

 M(t) = �[M0iexp(-t/T2i)] + Moilexp(-t/T2oil) + Mgasexp(-t/T2gas)                                  (6-А.1)

При условии, что учитываются эффекты от поляризации, M0i, Moil, и Mgas могут быть

выражены как:

M0i = M0i(0)[1- exp(-TW/T1i)]

Moil = Moil(0)[1- exp(-TW/T1oil)]

Mgas = Mgas(0)[1- exp(-TW/T1gas)]                                                                             (6-A.2)

В этом случае амплитуды эхо-сигналов для TWL и TWS могут быть выражены следующим

образом:

MTWL(t) = ��M0i(0)[1- exp(-TWL/T1i)]exp(-t/T2i)� 

+ Moil(0)[1- exp(-TWL/T1oil)]exp(-t/T2oil) 

+ Mgas(0)[1- exp(-TWL/T1gas)]exp(-t/T2gas)                                                                 (6-A.3)

и

MTWS(t) = ��M0i(0)[1- exp(-TWS/T1i)]exp(-t/T2i)� 

+ Moil(0)[1- exp(-TWS/T1oil)]exp(-t/T2oil) 

+ Mgas(0)[1- exp(-TWS/T1gas)]exp(-t/T2gas)                                                                 (6-A.4)

�M(t) = MTWL(t) - MTWS(t) 

= ��M0i(0)exp(-t/T2i) [exp(-TWS/T1i)- exp(-TWL/T1i)] �

+ Moil(0)exp(-t/T2oil) [exp(-TWS/T1oil)- exp(-TWL/T1oil)]

+ Mgas(0)exp(-t/T2gas) [exp(-TWS/T1gas)- exp(-TWL/T1gas)]                                       (6-A.5)
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Тогда функции поляризации могут быть определены для воды (��wi), нефти (��o) и газа

(��g) следующим образом: 

��wi = [exp(-TWS/T1i)- exp(-TWL/T1i)]                                                                    (6-A.6)

��o = [exp(-TWS/T1oil)- exp(-TWL/T1oil)]                                                                 (6-A.7)

��g = [exp(-TWS/T1gas)- exp(-TWL/T1gas)]                                                               (6-A.8)

Следовательно, уравнение 6-A.5 принимает вид:

�M(t) = �[M0i(0)exp(-t/T2i) ��wi ] 

+ Moil(0)exp(-t/T2oil) ��o 

+ Mgas(0)exp(-t/T2gas) ��g                                                                                         (6-A.9)

Если время TWS было выбрано таким, чтобы протоны в воде, находящейся в поровом

пространстве, были полностью поляризованы, то ��wi � 0. Это условие позволяет

переписать разницу между двумя эхо-сигналами в следующем виде: 

�M(t) = Moil(0)exp(-t/T2oil) ��o + Mgas(0)exp(-t/T2gas) ��g                                   (6-A.10)

Функция разностной пористости в этом случае определяется как: 

��(t) = �*oilexp(-t/T2oil) + �*gasexp(-t/T2gas) + noise                                                (6-A.11)

где

noise  =  шум, записанный во время CPMG - измерений обоих эхо-сигналов;

�� = разница в углеводородо- насыщенной пористости полученная из эхо-

сигналов;

�*oil = кажущаяся нефте- насыщенная пористость, полученная из разности

двух эхо-сигналов;

�*gas = кажущаяся газо- насыщенная пористость, полученная из разности

двух эхо-сигналов;

И наконец, кажущиеся пористости связаны с истинными значениями (�oil и �gas) через:

�*oil = [Moil(0)/M100%(0)] ��o = �oilHIoil��o                                                            (6-A.12)
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�*gas = [Mgas(0)/M100%(0)] ��g = �gasHIgas��g                                                        (6-A.13)

где:

M100%(0)  =амплитуда эхо-сигнала CPMG , во время ноль, полученная в

приборе MRIL при калибровочных измерениях в водяной

ёмкости (100% пористость)

HIoil = углеводородный индекс нефти

HIgas = углеводородный индекс газа

Собственно процедура обработки методом TDA, состоит из следующих шагов:

1. Запись двух эхо-сигналов с активизацией двойного времени ТW.

2. Определение объемных свойств (T1, T2 и HI) нефти и газа в пластовых условиях

(т.е. температура, давление и вязкость нефти).

3. Вычитание эхо-сигналов один из другого.

4. Поиск T2 для газа и нефти и поиск T1 для нефти в пластовых условиях.

5. Рассчет кажущихся пористостей (�*oil и �*gas) по уравнению 6-А.11.

6. Рассчет истинных пористостей (�oil и �gas) по уравнениям 6-А.12. и 6-А.13.,

объемных свойств, определенных при шаге 2, и кажущихся пористостей,

определенных при шаге 5. (Отметим, что значения T1, определенные при шаге 2,

или измерянные при тройной активации ТW12 используются для рассчета функций

поляризации нефти и газа).

7. Рассчет водонасыщенной и эффективной пористости.

Ниже перечислены несколько предположений используемых при анализе TDA, которые

рассматривались более подробно выше, в данном приложении:

� В уравнении 6-А.1 каждый из сигналов получаемых от нефти и газа,

описывается спадом по одной экспоненте. Этот моно-экспоненциальный спад

является разумным допущением релаксации в газе и многих низковязких

нефтей.
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� В уравнении 6-А.10 время ТWS должно быть выбрано таким, чтобы протоны

водорода в водной фазе были полностью поляризованы. В противном случае,

требуется введение поправок и анализ весьма усложняется. 

� В уравнении 6-А.11 величина �� - разница полученная от двух эхо-сигналов

зависит от двух параметров: истинной пористости породы и контраста в

значениях Т1 между водой и легкими углеводородами. Если �� недостаточно

велика, скажем менее �� < 1.5 единиц пористости, то распознование

разностного сигнала, на единично- или би-экспонентной зависимости может

быть затруднено из-за высокого уровня шумов при котором регистрируются

данные MRIL. 

� Должен быть значительный контраст в значениях Т1 между водой и легкими

углеводородами.

� Значения времени Т2 у газа и нефти достаточно различны, чтобы полученные от

них сигналы могли разделяться.

Данные предположения, как правило, правомочны для гидрофильных коллекторов с

высокой пористостью и содержащих легкие углеводороды (газ или легкую нефть). В

таких пластах возможно применение TDA, но при условии, что правильно заданы времена

ТWL и ТWS с тем, чтобы усилить контраст в значениях Т1 между водой и легкими

углеводородами. Следовательно, планирование выполнения работ является критичным

для успеха метода TDA. Анализ TDA выполняется только на материалах получаемых

прибором MRIL – пористости, проницаемости и типизации углеводородов, наличие

данных стандартных методов при этом не нужно.
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Как рассматривалось в главе 6 интерпретация

собственно данных MRIL методами анализа

временной составляющей (TDA) и анализа

диффузии (DA) дает информацию только о зоне

проникновения. Это происходит из-за

незначительной глубины исследования приборов

ЯМР. Если материалы MRIL рассматриваются в

сочетании с другими каротажными методами, то

результаты такой комплексной интерпретации

дают еще более достоверное и полное

представление о строении коллектора. Так

например, комбинирование MRIL и глубокого

сопротивления, дает полный анализ флюидов в

неизмененной зоне. Методика MRIAN - одна из

интерпретационных моделей использующая

такую комбинацию данных1. 

Если данные прибора MRIL комбинируются с «четверкой» методов (нейтронный,

плотностной, акустический и сопротивлений), то результаты обработки могут дать

информацию принципиально важную для заканчивания скважины. Например, при

использовании модели под названием StiMRILTM, можно судить о свойствах породы,

литологии и проницаемости коллектора. Модель StiMRIL и её применение для

моделирования и оптимизации так-же рассматриваются в этой главе.

______________________
   Глава  7

Результаты 
интерпретации MRIL
в сочетании с другими

методами ГИС
______________________
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Концепция MRIAN
Пакет MRIAN позволяет осуществить совместную интерпретацию MRIL и данных метода

сопротивлений (индукционного или БК). Рассчет пластовых флюидов в неизмененной

зоне производится на основе модели двойной воды (двойного электрического слоя)2.

Основными исходными данными являются истинное сопротивление пласта (Rt),

суммарная (общая) пористость (�tot) и объем глинисто связанной воды (Swb). Данные MRIL

используются для получения двух параметров – пористости глинисто-связанной воды

(MCBW) и эффективной пористости (MPHI). Аналогичный подход может применяться и

при использовании других моделей например Арчи или Ваксман-Смита3.

Принципы MRIAN

Модель двойной воды
В общем виде модель двойной воды показана на рисунке 7.1 (слева) и описывает

электропроводность породы следующим уравнением:

� � �
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SCSC 1� (7.1)

где: 

Ct = проводимость пласта

Cw = проводимость пластовой воды

Ccw = проводимость воды, связанной с глинистой компонентой

�T = общая (суммарная) пористость

SwT = общая (суммарная) водонасыщенность (как доля суммарной пористости)

Swb = водонасыщеннось, связанная с глинистой компонентой  (как доля суммарной

пористости)

m = коэффициэнт цементации

n = коэффициэнт насыщенности

Ccw является величиной зависящей от температуры: 

Ccw = 0.000216(T-16.7)(T + 504.4) (7.2)
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Где T – пластовая температура в градусах Фаренгейта

Коатес (Coates) модифицировал модель двойной воды и уменьшил неопределенность

связанную с экспонентами m и n, предложив к использованию комплексный параметр W

определяемый как соотношение: 

� �
� �wTT

n
wT

m
T

S
SW

�

�

log
log

� (7.3)

С этим параметром проводимость породы в модели двойной воды принимает следующий

вид: 
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Пакет MRIAN рассчитывает общую водонасыщенность (SwT), используя уравнение 7.4

после того как определены остальные параметры. 

Определение Swb в модели двойной воды:

Водонасыщенность, связанная с глинистой компонентой (Swb), рассчитывается используя

суммарную и эффективную пористость по данным MRIL (�T = MSIG, и �e = MPHI) по

следующей формуле:

T

eT
wbS

�

�� �

� (7.5)

Значения суммарной пористости так-же могут быть взяты по данным стандартных

методов (например кросс-плот нейтронной и плотностной пористости).

ЯМР измерения приводящие к определению �T  и �e могут быть занижены в случаях

низких значений углеводородного индекса (т.е. в газоносных отложениях) или если легкие

углеводороды не полностью поляризованы. В такой ситуации перед применением MRIAN
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в значения �T  и �e должны быть внесены соответствующие поправки используя метод

анализа временной составляющей (TDA, см. главу 6). 

MRIAN так-же использует вторичные оценки Swb, полученные по данным стандартного

комплекса: ГК, нейтронного, плотностного, акустики и метода сопротивений. В пакете

MRIAN сравнивается величина среднего значения, полученных вторичных оценок Swb, с

первичным значением Swb, по данным метода MRIL. В последующих рассчетах

используется наименьшее из двух значений.

Контроль качества при рассчетах Swb

MRIAN позволяет осуществлять постоянный контроль за качеством значений параметра

Swb при помощи кросс-плота кажущейся проводимости пластовой воды (Cwa) и

рассчитанных значений Swb. При этом Cwa определяется как: 

W
tt

wa R
C

�

1
� (7.6)

Rt - истинное значение сопротивления пласта. Точки полученных значений должны

находиться между двумя линиями: верхней, соответствующей граничным значениям

полностью водоносыщенного пласта SwT = 100%, и нижней, соответствующей

продуктивной зоне (см. рисунок 7.2 ). 

Верхняя линяя рассчитывается по модели двойной воды, при условии, что SwT = 100%. 

� �wcwwbwwa CCSCC ��� (7.7)

Нижняя линяя рассчитывается с использованием условий остаточной влаги (в чистой

глине) SwT = Swb = SwIRR. 

� � cw
W

wbwa CSC � (7.8)
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Рисунок 7.1 В глинистом коллекторе модель двойной воды (в левой колонке)
дает более детальное описание распределения поровых флюидов, чем модель
Арчи (правая колонка) которая применима к чистому коллектору. Данные MRIL
(средняя колонка) дают два критических параметра, используемые MRIAN в
методе двойной воды: пористость занятую глинисто-связанной водой (MCBW)
и эффективную пористость (MPHI).
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Рисунок 7.2 Кросс-плот данных Cwa vs. Swb, применяемый для проверки качества рассчетов значений Swb. Точки на графике
должны, в общем случае, находиться между двумя кривыми: верхней, соответствующей значению SwT = 100%, и нижней на
которой расположены точки SwT = Swb.
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Определение экспоненты W в рассчетах MRIAN

Экспонента W используемая в уравнении 7.3 вычисляется в автоматическом режиме при

обработке данных пакетом MRIAN. Решая уравнение 7.4, относительно W получаем:

� � � �
� �wTT

wTwbcwwTwbw

t

S
SSCSSC

C

W
�log

//1
log

��

� (7.9)

Реальные значения W окажутся между двумя граничными случаями:

� 100% водонасыщенной зоны ;

� продуктивной зоны, при наличии только остаточной влаги ;

В случае 100% водонасыщенности W обозначается как Ww и может быть рассчитано по

уравнению 7.9 используя SwT = 1.0:
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В случае предельного насыщения углеводородами (т.е. в породе находится только

остаточная влага) W обозначается как Wi и может быть рассчитано по уравнению 7.9

используя SwT = SwIRR.:

� �
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где 
T

wbT
wirr

BVISS
�

� �

� (7.12)

Параметр BVI получают по данным каротажа MRIL. 

В обычном продуктивном коллекторе W всегда меньше чем Ww и больше чем Wi. 

Wi < W < Ww (7.13)

В пакете MRIAN для вычисления W использутся следующая эмпирическая зависимость4: 
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�
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MPHI
BVIWW Q 4.065.1 (7.14)

Если WQ > Ww MRIAN приравнивает WQ = Ww и зона считается водоносной, если WQ < Wi

то MRIAN устанавливает WQ = Wi и зона считается с остаточной водонасыщенностью.

Рассчет суммарной водонасыщенности SwT в пакете MRIAN

MRIAN использует параметры WQ и Swb для рассчета суммарной водонасыщенности SwT

по модели двойной воды затем, используя полученное значение SwT, рассчитывается

суммарная пористость заполненная водой (�wT), объемное содержание воды в

эффективной пористости (CBVWE) и объем порового пространства, заполненного

углеводородами (�h). Эти параметры связаны между собой: 

�wT = SwT�T (7.15)

CBVWE = �wT – MCBW  (7.16)

�h = �e – CBVWE (7.17)

MCBW - объем воды, связанной с глинистой компонентой, полученный по данным MRIL,

а �e - эффективная пористость.

Параметры влияющие на рассчеты MRIAN

Сопротивление пластовой воды Rw, как правило, является самым важным параметром,

входящим в модель для рассчета водонасыщенности, поэтому для его определения

должны быть использованы все имеющиеся данные. Определение солености образца

пластового флюида может быть одним из таких источников. Кроме того, значения Rw

могут быть получены из уравнения Арчи, при известной пористости и сопротивлении Rt

(график Пикетта) и по данным BVI. Кривая ПС может использоваться с той-же целью,5

однако следует помнить, что на показания ПС, сопротивления и методов пористости

оказывает влияние присутствие углеводородов.
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Запись данных прибором MRIL для MRIAN
Данные MRIL необходимые для обработки MRIAN могут быть получены при записи с

активацией общей пористости, при которой регистрируются CPMG эхо-сигналы двух

типов: полностью и частично-поляризованные. Полная поляризация достигается

использованием длинного времени TW и TE = 0.9 или 1.2 мсек. Как говорилось ранее, эти

значения параметров составляют стандартную активацию для регистрации T2. Сигнал с

частичной поляризацией записывается при коротких временах TE (0.6 мсек.) и TW (20

мсек.).

После длительного времени поляризации (TW) регистрируется сигнал при полной

поляризации. Затем записывается сигнал с частичной поляризацией. Последовательность

состоит из 50 эхо-сигналов с 10-ю измерениями в каждом. Первые два эхо-сигнала

используются для стабилизации системы и, впоследствии, исключаются из обработки.

Остальные эхо-сигналы суммируются и используются для рассчета части спектра

дискретного распределения Т2, которая попадает в интервал Т2 � 4 мсек. Эта часть спектра

представляет сигнал от воды микропористости и воды связанной с глинистой

компонентой. Рабочая гипотеза – эхо-сигнал с частичной поляризацией приходит от воды

связанной с глинистой компонентой. При комбинировании двух времен Т2 (одно от

полностью поляризованных эхо-сигналов, другое – от частично поляризованных),

образуется последовательное распределение Т2 в интервале от 0.5 мсек. до более чем 1,000

мсек., которое дает хорошую оценку общей пористости.

Принцип записи данных общей пористости, показан на рисунке 7.3.

Непосредственно на скважине каротаж общей пористости дает информацию о дискретном

распределении, полностью и частично поляризованном спектральном распределении Т2 и

кажущихся величин: MCBW, MPHI, BVI, MFFI и MPERM, как это показано на рисунке 7.4.

Первичные скважинные данные рассчитываются со стандартными значениями Т2cutoff и

параметров проницаемости, принимаемых по умолчанию. 
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Данные MRIL записанные с двойными временами TW и TE или со стандартной активацией

общей пористости, так-же могут использоваться для анализа MRIAN. В случаях когда

использовалась запись с двойными временами TW или TE эффективная пористость MPHI

должна рассчитываться по эхо-сигналам с длинным TW, при записи с двойным TW, и по

эхо-сигналам с коротким TE, при записи с двойным TE. Для определения общей

пористости требуются данные других источников, например нейтронного-плотностного

кросс-плота.
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Рисунок 7.3 При записи каротажа общей пористости регистрируют эхо-сигналы
полностью поляризованных флюидов используя короткое ТЕ (0.9-1.2 мсек.) и эхо-сигналы
частичной поляризации с очень коротким ТЕ (0.6 мсек.) и коротким TW (20 мсек.). На
нижней части рисунка показаны соответствующие распределения времен релаксации Т2.
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Рисунок 7.4 На этом фрагменте каротажной диаграммы показаны
полевые результаты записи суммарной пористости. В первой
колонке - кривая ГК и инкрементное распределение Т2 полной
поляризации. Во второй колонке проницаемость MPER
рассчитанная по модели Коатеса. В третьей колонке - волновое
распределение Т2 сложенное из распределений полученных при
полной и частичной поляризации. В четвертой колонке – кривые
MCBW, MPHI, и BVI.
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Применение MRIAN
Низкоомный продуктивный коллектор 1

На рисунке 7.5 показан пример из скважины (той-же, что и на рисунке 7.4) расположенной

в Мексиканском заливе, США. В первой коллонке помещены данные ГК, кавернометрии

и дискретное распределение Т2. Во второй колонке находятся кривые метода

сопротивлений и проницаемости рассчитанной по методу Коатеса (Coates). В третьей

колонке показано волновое распределение сигнала Т2 от воды связанной с глинистой

компонентой, полученного из эхо-сигналов с длинным временем TW. В интервале ХХ690

– ХХ870 коллектор нефтеносный, о чем свидетельствуют сигналы с длинным временем

Т2. В четвертой колонке показаны окончательные результаты интерпретации MRIAN.

Данные MRIL показанные в этом примере были получены в результате записи общей

пористости и записи с двойным временем TW. Данные записи общей пористости

использовались для определения воды связанной с глинистой компонентой, капиллярно

связанной воды и объема свободных флюидов. Данные записи с двойным TW

(использовались времена со значениями 1 и 8 сек.) применялись для типизации

углеводородов и определения поправок за недостаточную поляризацию и эффекты

углеводородного индекса. Основываясь на материалах MRIL: BVI, MFFI и CBW,

значительное снижение сопротивления, наблюдаемое от интервала А (ХХ690-ХХ710) к

интервалу В (ХХ710-ХХ870), было связано с увеличением содержания связанной влаги

(см. колонку 3), а не появлением свободной воды. Результаты интерпретации MRIAN

позволили предположить, что в зоне В присутствует только связанная вода (см. колонку

3), и что коллектор обладает достаточной проницаемостью (см. колонку 2) для добычи

подвижных углеводородов.

На рисунке 7.6 показаны результаты анализа TDA (см. колонку 5) и комбинированные

результаты TDA/MRIAN (см. колонку 6) для той-же скважины, что и на рисунках 7.4 и 7.5.

При анализе TDA/MRIAN метод TDA дает истинное значение эффективной пористости для

последующей обработки в MRIAN. Для данной скважины, пробуренной на РНО,

результаты обоих методик TDA и TDA/MRIAN хорошо согласуются друг с другом.
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Рисунок 7.5 Пример обработки методом MRIAN представлен на
материалах той-же скважины из Мексиканского Залива, что и на
рисунке 7.4. Обычный рассчет методом Арчи показывал, что
интервал xx710 - xx870, оценивается как водонасыщенный. Данные
результатов обработки MRIAN характеризуют водонасыщенность
зоны как остаточную (четвертая колонка) и свидетельствуют о
достаточно высокой проницаемости (вторая колонка), чтобы дать
приток нефти.
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Рисунок 7.6 Результаты методов TDA и TDA/MRIAN (показанные в
пятой и шестой колонках) хорошо согласуются между собой.
Материалы взяты из той-же скважины, пробуренной на РНО, что и
на рисунках 7.4 и 7.5.
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Низкоомный продуктивный коллектор 2

Поскольку данные прибора MRIL позволяют судить о связанной воде, одним из

преимуществ которые дает этот метод для петрофизической интерпретации является

весьма уверенное выделение продуктивных низкоомных коллекторов, как это показано на

предыдущем примере. Если порода содержит значительное количество связанной воды, то

ее сопротивление будет низким и коллектор может быть проинтерпретирован как

водоносный. Однако, материалы MRIL мгновенно показывают, что вода является

связанной и, следовательно, у зоны есть потенциал. По материалам стандартного

комплекса, показанным на рисунке 7.7, песчаник на участке ниже отметки ХХ200,

обладает сопротивлением около 0.5 Омм (см. колонку 2) и средней пористостью, по

данным нейтронного и плотностного методов приблизительно 38% (см. колонку 4).

Типичная «прикидочная» интерпретация Sw, при таких параметрах, оценит зону как

водоносную.

На рисунке 7.8 показаны данные MRIL, для того-же интервала, записанные со стандартной

активизацией Т2. В первой колонке показано дискретное распределение Т2, во второй –

проницаемость по методу Коатеса, а в третьей колонке представлено спектральное

распределение (или изображение переменной плотности) Т2. В четвертой колонке

показано содержание связанной воды (BVI - заштриховано серым) и пористость занятая

подвижными флюидами (заштриховано желтым). Содержание связанной воды

последовательно возрастает с увеличением глубины, позволяя предполагать, что в этом

направлении уменьшается зернистость песчаника (при уменьшении размера зерен

песчаника в них возрастает содержание связанной воды). Сравнение данных BVI с

показаниями метода сопротивлений свидетельствует о том, что сопротивление породы

уменьшается с возрастанием содержания воды. Поскольку начальные данные MRIL

внушали оптимизм была применена обработка MRIAN. На рисунке 7.9 показаны

результаты комплексной интепретации MRIAN данных MRIL и метода сопротивлений. В

первой колонке показаны кривые ГК, кавернограмма, ПС и дискретное распределение Т2.

Во второй колонке – кривые сопротивления и проницаемости по MRIL. В третьей колонке

показано спектральное распределение времени Т2 (переменной плотности). В четвертой

колонке представлены результаты MRIAN - распределение поровых флюидов, где
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капиллярно-связанная вода закрашена серым цветом, подвижная вода голубым и

углеводороды – зеленым. Интерпретация MRIAN однозначно говорит о том, что данная

зона не содержит подвижной воды. Интервал ниже отметки ХХ200 был испытан, и при

этом получили приток безводной нефти.

Мониторинг наличия газа прибором MRIL в карбонатах Арабского залива

В коллекторах месторождения в Арабском заливе, содержащего легкую нефть, была

предпринята разработка с закачиванием газа. При мониторинге разработчики столкнулись

с двумя основными проблемами: влиянием солености на стандартные методы ГИС и

неполноценными измерениями приборами пористости во время бурения (LWD – каротаж

на буровой колонне). Устройства LWD всегда недооценивали пористость на 3-4 единицы.

Каротаж MRIL выполнялся в этом коллекторе по двум причинам: возможности оценки

присутствия газа при анализе TDA и из-за незначительного влияния колебаний солености

на показания прибора MRIL. Так, в боковой зарезке одной из скважин расположенной под

углом 59 градусов, были выполнены измерения MRIL, нейтронной LWD и плотностной

LWD пористости. В первоначальном стволе был отобран керн, а из боковой зарезки – нет.

Данные пористости полученные скважинными методами MRIL, LWD и по керну были

статистически сопоставлены. Средняя пористость MRIL, после введения поправки за газ,

составила, в интервале где отбирался керн, около 21 единицы пористости, что хорошо

сопоставлялось с данным керна – примерно 20.8 единиц. Средняя пористость полученная

приборами LWD для того-же участка составила 17.4 единицы.
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 Рисунок 7.7 По данным стандартного каротажа зона ниже отметки хх200 из-за низкого
сопротивления интерпретируется как водоносная.
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 Рисунок 7.8 Запись ЯМР-каротажа прибором MRIL была выполнена в той-же
скважине, что и на рисунке 7.7. В четвертой колонке показано распределение
суммарной связанной воды (BVI) которое увеличивается с глубиной.
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 Рисунок 7.9 Результаты обработки MRIAN показанные в четвертой колонке были
получены в результате совместной интерпретации данных стандартного каротажа
(рисунок 7.7) и MRIL (рисунок 7.8). Весь интервал был оценен как продуктивный и
не содержащий свободной воды, что затем было подтверждено результатами
опробывания.
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В колонках 6 и 7, на рисунке 7.10, показаны результаты соответственно, обработки

временного домена (TDA) и MRIAN. TDA позволяет выделить в промытой зоне четыре

типа флюидов: газ (закрашен красным), остаточную нефть (зеленый), подвижную воду

(голубой) и связанную воду (серый). В колонке 7 показаны результаты анализа MRIAN, из

которых видно, что в коллекторе находится только связанная вода. Сопоставляя

результаты двух обработок приходим к выводу, что подвижная вода на материалах TDA

является фильтратом РВО.

Разница в типизации поровых флюидов методами TDA и MRIAN связана с различной

глубиной исследования скважинных приборов. Все данные использованные для анализа

TDA получены из прискважинной (помытой) зоны которая, при бурении на РВО, обычно

содержит больше влаги, чем неизмененная часть. MRIAN использует данные

сопротивления с большой глубинностью, которые более надежны для оценки

неизмененного коллектора, соответственно и истинное насыщение пласта, по его

результатам более достоверно. При совместном использовании результатов обработки

TDA и MRIAN могут сравниваться данные о промытой и неизмененной зонах.

Интерпретация TDA дает достоверную информацию о типе и количестве флюидов и

может служить хорошим источником данных для обработки MRIAN позволяя, например,

вводить поправки в эффективную пористость за углеводородный индекс и эффекты

поляризации. Если по MRIL померяна общая пористость, то для рассчета количества воды

связанной с глинистой компонентой и суммарной пористости данных достаточно, а

сопоставление TDA/MRIAN может проводиться без стандартных методов пористости.

Сравнение результатов обработки TDA и MRIAN позволяет судить об изменениях в

водонасыщенности SW между промытой и неизмененной частями коллектора. Эти

изменения зависят от типа бурового раствора. На рисунке 7.11 показаны принципы

сравнения TDA и MRIAN для скважины пробуренной на РВО. 
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Рисунок 7.10 Обработка данных MRIL методами TDA и MRIAN была выполнена в
нагнетательной (газовой) скважине Арабского залива, в коллекторе содержащим легкую
нефть. В первой колонке показаны ПС и ГК, а так-же инкрементное распределение Т2. Во
вторую колонку помещены кривые проницаемости рассчитанной стандартным подходом по
модели Коатеса и сопротивление LWD записанное буровым инструментом. Третья колонка
показывает спектральное распределение (VDL) Т2; в четвертой колонке – волновые
распределения Т2 записанные с длинным и коротким TW. В пятой колонке – спектр
разности; в шестой – результаты TDA; в седьмой- результаты MRIAN. Формат данных был
изменен в соответствии с требованиями клиента и отличается от остальных примеров в
этой книге.
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Оценка коллекторских свойств глинистого песчаника «туффового» состава с нефтью

средней вязкости

На рисунке 7.12 показана часть диаграммы EDM/MRIAN из скважины в бассейне Св.

Джорджа в Аргентине (San Jorge Basin). Отложения представлены сериями средне- и

мелкозернистых песчаников которые, предположительно, имеют вулканокластическое

происхождение. Мощность отдельных прослоев колеблется в пределах от 5 до 20 футов, а

протяженность оценивается в 1 – 3 мили. Проницаемость меняется от 2 до 2,000 мДарси,

пористость – от 5 до 25%. Добываемые углеводороды представлены нефтью с вязкостью

от 20 до 50 сантиПуаз. Однако, залежи с нефтями повышенной вязкости (свыше 100

сантиПуаз) так-же возможны. Скважины бурились на депрессии с применением РВО,

сопротивление бурового раствора приблизительно 2-3 Омм. 

Поскольку уровень добычи с одной скважины очень небольшой, минимизация стоимости

заканчивания являлась обязательной. Одной из основных проблем в петрофизических

анализах было выделение участков сложенных «туффовыми песчаниками», с

меняющимся количеством содержания цеолитов и глинистой компоненты. При

присутствии цеолитов их сравнительно низкая плотность (2.10 – 2.20 г/см3) приводила к

завышенным показаниям плотностной пористости. Соответственно, содержание

глинистых частиц недооценивалось, что приводило к завышенным значениям

рассчитанной пористости и проницаемости. Во многих случаях такие участки выглядели

на каротажных материалах как потенциально продуктивные, но при испытании часто не

давали притока вообще или давали очень немного нефти. В такой ситуации возможность

отделения непроницаемых от слабопроницаемых участков и выделение продуктивных

интервалов могла существенно улучшить результаты перфорации и стимуляции. Для

решения этих задач здесь так-же применялся каротаж MRIL.

Для того чтобы оценить петрофизические свойства такие как вода связанная с глинистой

компонентой, капиллярно связанная вода, свободные флюиды, эффективная пористость и

проницаемость, была использована активация суммарной пористости (TE = 0.6 и 1.2 мсек.

и TW = 3 сек.). Для выполнения интерпретации EDM и оценки типа и количества нефти

средней вязкости, измерения проводились с активацией двойного времени задержки (TE =
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3.6 и TW = 0.3 и 3 сек.). Интервал представляющий интерес в данном случае часто имел

компоненты пористости в области 256 и 512 мсек. в стандартном распределении Т2

полученного при записи с TE = 1.2 мсек. Присутствие таких компонент говорит о наличии

крупных пор заполненных водой. Используя контраст в значениях диффузии между водой

и нефтью средней вязкости, верхняя граница сигнала от воды (T2DW) была установлена

равной 44 мсек. Следовательно, любой сигнал со временем Т2 больше 44 мсек., мог быть

связан с нефтью, у которой среднее значение Т2 около 90 мсек. На основании этой

информации интерпретация материалов MRIL позволяет однозначно выделить интервал

Х036.5 – Х042.5 как нефтеносный. Стандартное распределение сигнала Т2, показанное в

третьей колонке не позволило определить положение ВНК. Однако, на результатах

обработки EDM представленных в четвертой колонке, этот контакт выделяется

достаточно четко. Оператор закончил эту зону без стимуляции и получил приток нефти

554 баррелей в день со следами воды.

Используя уравнение Коатеса с коэффициэнтом С = 6.0, прибор MRIL позволяет

рассчитывать непрерывную кривую проницаемости. Оператор пришел к заключению, что

участки с проницаемостью меньшей 1 милли Дарси обладают неудовлетворительными

добывными возможностями. Используя информацию о проницаемости получаемую с

MRIL, был применен гидроразрыв который значительно улучшил ситуацию. Было

установлено, что данные каротажа MRIL дают представительную оценку проницаемости

коллектора в области дренирования и, таким образом, появилась возожность обоснованно

судить об уровне добычи после гидроразрыва. Зоны со значением Kh выше 2 мД/м (где K

–проницаемось, мД и h – мощность пласта) и давлением, составляющим по крайней мере

80% от начального, были выделены для обработки. Однако, в ряде случаев, после

применения гидроразрыва приток в зонах выше 2 милли Дарси/м не увеличился, что

позволило сделать предположение о возможном влиянии цеолитов. Такие участки

уверенно выделяются при сравнении пористости метода MRIL и пористости по нейтрон-

плотностному кросс-плоту. Зоны, в которых эффективная пористость определенная по

MRIL существенно ниже нейтрон-плотностной пористости представлены «туффовыми»

песчаниками и будут непродуктивны.
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Рисунок. 7.11 Сравнение результатов TDA и MRIAN позволяет оценить влияние зоны проникновения. В средних колонках
показаны объемные модели, соответственно проникновения и неизмененной зоны; предполагается РВО. В верхней части -
данные собственно интерпретации MRIL и результаты TDA. EPOR - эффективная пористость, с поправкой за эффекты
поляризации, PhiW - объем подвижной воды, PhiO - объем нефти, PhiG - объем газа. В нижней части - результаты интерпретации
MRIAN. Разница полученных результатов, показанная здесь, вызвана влиянием фильтрата, который сказывается на результатах
методов незначительной глубинности TDA и MRIAN, но практически не влияет на показания глубокого сопротивления,
использованного при MRIAN.
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Рисунок 7.12 Результаты обработки методами EDM/MRIAN. В первой колонке показаны:
кавернограмма, ПС и ГК, а так-же инкрементное распределение Т2. Во второй колонке
помещены кривые проницаемости рассчитанной по данным MRIL и сопротивления. В третьей
колонке – волновое распределение Т2 полученное из частично поляризованных эхо-сигналов,
используемое для рассчета глинисто-связанной воды, и из полностью поляризованых эхо-
сигналов записанных с коротким ТЕ. Спектр разницы, в четвертой колонке - результат
вычитания двух распределений Т2 полученных при TE = 3.6 мсек. и TW = 300 и 3,000 мсек.
Вертикальная линия в четвертой колонке показывает положение максимального значения для
воды (T2DW = 44 мсек.). Резкие изменения в спектре T2 указывают на наличие ВНК. В пятой
колонке показаны результаты анализа MRIAN: состав и объем флюидов (глинисто- и
капиллярно-связанная вода, свободная вода и углеводороды.
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В результате интеграции материалов MRIL в программу каротажных работ количество

обработок зон не представляющих экономического интереса резко упало и,

соответственно, сократился объем затрат на заканчивание и обработку. Результаты

интерпретации методом EDM на двух других участках, оцененых как перспективные (см.

рисунок 7.12) так-же были подтверждены последующими опробываниями.

MRIAN в скважине с легкими углеводородами

На рисунке 7.13 показаны результаты MRIAN в скважине, где каротаж выполнялся с

активацией двойного времени TE (каротаж с двойным TE был показан на рисунке 6.13). В

первой колонке помещены кривые ГК, кавернометрии и распределение сигнала Т2, во

второй колонке – кривые метода сопротивлений и рассчитанной по данным MRIL

проницаемости, в третьей колонке - распределение Т2 полученное из эхо-сигналов с

коротким TE. В четвертую колонку помещены кривые пористости нейтронного и

плотностного методов и результаты обработки MRIAN: объемы капиллярно-связанной и

свободной воды и углеводородов. Результаты MRIAN, метода сопротивлений и

распределение Т2 четко указывают на наличие ВНК примерно на отметке Х050 футов.

Сравнение пористости MRIL с нейтронной и плотностной пористостью, позволяет

предположить, что углеводородный индекс флюида в зоне над отметкой Х050 футов выше

единицы. Распределение Т2 в третьей колонке показывает, что пиковые значения Т2,

расположенные в области 256 мсек., находятся в интервале Х000 и Х050 футов,

следовательно, этот интервал не должен содержать газа. Однако, выше отметки Х000,

амплитуда пика 256 мсек. снижается и больше сигнала Т2 поступает из области около 40

мсек., что свидетельствует о присутствии газа. Проницаемость в колонке 2 рассчитанная

непосредственно по данным пористости MRIL, дает заниженные значения выше отметки

Х050 футов. Материалы активации с двойной задержкой (двойным TW) позволят

осуществить более точную оценку этого коллектора.
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Рисунок 7.13 Результаты MRIAN были получены при обработке данных двойного
времени TE записанных в коллекторе содержащем легкие углеводороды. Данные метода
пористости, так-же как и данные Т2, показывают наличие газа выше отметки 8,000 футов.
Однако, в интервале 8,050 - 8,000 футов, метод пористости указывает на газ, в то время как
распределение Т2 это не подтверждает. Если были бы записаны данные с двойным
временем TW, то расхождение в интерпретациях можно было бы разрешить однозначно.
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Заканчивание скважин с ЯМР. Метод StiMRIL
Пакет StiMRIL позволяет осуществлять совместную интерпретацию результатов метода

MRIL (особенно: проницаемость, эффективную и суммарную пористость) и других

петрофизических данных для оптимизации конструкции скважины и стимуляции притока.

По сравнению с предыдущими источниками информации, это сочетание позволяет

получать сравнительно простые и надежные ответы на следующие важные вопросы:

� Где расположены углеводороды?

� Какой будет уровень добычи?

� Будет ли коллектор давать воду?

� Какова текущая эффективная мощность пласта?

На рисунке 7.14 приводиться сравнение заканчивания скважины после применения

StiMRIL со стандартным заканчиванием в свите Травис Пик (Travis Peak), восточный

Техас, США. Это сравнение подчеркивает значение данных MRIL при выборе объектов и

проектировании заканчивания скважин. Стандартные методы ГИС, как правило дают

незначительные различия в трех песчаниках, схематично показанных на рисунке.

Поэтому, при обычном заканчивании, все три объекта вместе подвергались гидроразрыву.

При этом обычно получали приток около 300,000 куб.футов газа в день при обводненноти

250 баррелей воды в день. Средние затраты на такое заканчивание составляли до 76,000

долларов на скважину.

С целью увеличения успешности заканчивания скважин в отложениях Юрского возраста

Коттон Вэлли (Cotton Valley) восточный Техас и Луизиана, совместно были

проинтепретированы данные прибора MRIL и других методов. Продуктивный разрез

весьма сходен по своим характеристикам с отложениями Травис Пик. На рисунке 7.15

приводиться пример обработки StiMRIL каротажа из скважины в Коттон Вэлли. В первой

колонке изображены данные ГК, кавернограмма, диаметр скважины (ДС) и бинарное

распределение Т2. Во второй колонке помещены кривая ЯМР проницаемости MPERM, и

данные сопротивления двух зондов индукционного метода – с большой и средней

глубиной исследования. В третьей колонке изображено спектральное распределение

сигнала Т2 от глинисто-связанной воды, полученного из данных частичной поляризации.
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В четвертой колонке - спектральное распределение сигнала Т2 из данных полной

поляризации. В пятой колонке показана водонасыщенность MSWE не связанная с

глинистой компонентой и рассчитанная по MRIAN. В шестую колонку помещены

конечные результаты интерпретации MRIAN включающие в себя эффективную

пористость, связанную и свободную воду, и углеводороды. В колонке глубин показан

индикатор участков, проинтерпретированных как продуктивные, там-же расположена

нумерация различных зон, показанная красным цветом. В пятой колонке оранжевым

цветом заштрихованы предположительно газоносные области полученные в результате

разницы пористостей MRIL и нейтрон-плотностного кросс-плота. В данном случае тип

насыщения определеннного по MRIAN так-же показывает газ.

Стандартное заканчивание

Permeable
Gas

300 mcfd
250 bwp

Плотный
газоносный

625 mcf
    4 bwpd

Оптимизированное заканчивание
после применения MRIL

Газоносный
песчаник-

Водоносный
песчаник-

Рисунок 7.14  В свите Травис Пик (Travis Peak ), в восточном Техасе, США,
обработка данных скважин методом StiMRIL, привела к оптимизации дыбычи и
сокращению стоимости заканчивания, по сравнению с результатами интерпретации
стандартного комплекса. При стандартной практике заканчивания все три песчаные
зоны обрабатывались гидроразрывом. При заканчивании StiMRIL применялись
специализированные перфораторы и испытывался только средний интервал
(гидроразрыв не применялся).
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Анализ каротажных диаграмм показывает, что большая часть рассматриваемого разреза

содержит газ (по данным метода сопротивлений), но только три зоны (4,6 и 8) обладают

приемлимой проницаемостью. Анализ MRIAN показывает, что зона 8 содержит

значительное количество свободной воды. Поскольку присутствие свободной воды в этом

районе не является обычным, этот результат интерпретации был проигнорирован и все

три зоны обработаны гидроразрывом. При испытании было получено значительное

количество воды, соответственно, в последующих скважинах практика заканчивания была

изменена. В частности, зона 4 обрабатывалась гидроразрывом, а зона 6 – нет. Такое

решение было принято из-за опасения нарушить сплошность сравнительно маломощной

покрышки разделяющей 6-ю и 8-ю, содержащую свободную воду зону. Кроме того, на

основании рассчитанной проницаемости и эффективной мощности, зона 6 будет давать

приток только около 17% от притока из зоны 4.
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Рисунок 7.10 Пример презентации стандартных результатов StiMRIL по данным
MRIL и анализа MRIAN. Участки выделенные по StiMRIL ограничены красными линиями
проведенными поперек рисунка и пронумерованы в крайней левой колонке. Там-же
черным цветом показаны продуктивные участки выделенные по материалам StiMRIL.
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В предыдущих главах было показано, что в

большинстве коллекторов каротаж ЯМР может

быть использован как дополнительный метод

применяемый независимо или в комбинации с

другими данными ГИС, для их характеристики. В

ряде сложных случаев (т.е. смешанной

литологии, низкоомных продуктивных зон,

участков с низкой пористостью и

проницаемостью, присутствия средней вязкости

и высоковязких нефтей), где стандартные методы

не могут оценитьa свойства коллектора, ЯМР

является единственной технологией,

позволяющей сделать это.

Надежные и точные измерения петрофизических характеристик методом ЯМР требуют

внимательного, сделанного заранее планирования. Планирование выполнения работ

является критичным для успешной записи каротажа. Специфичная информация о пласте и

свойствах флиюдов может применяться для оптимизации схемы активации и,

следовательно, позволять получать информацию, которая раньше была недоступна, а так-

же повысить достоверность результатов. Если параметры записи заданы некорректно или

не оптимально, то результаты интерпретации будут значительно отличаться от истинных

свойств коллектора, как это показано на рисунке 8.1.

На рисунке показана инкрементная и кумулятивная пористость и спектр Т2 из двух серий

измерений ЯМР выполненных на одном образце керна. Красным цветом выделены кривые

полученные при недостаточном количестве эхо-сигналов (NE), недостаточной

                                                          
a В оригинале – «неспособны приоткрыть завесу». 
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поляризации (TW), слишком большом времени между эхо-сигналами (TE) и низком

соотношении сигнал/шум (S/N). В этом случае распределение Т2 весьма широкое,

одномодальное и с центром в районе 30 мсек., а кумулятивная пористость не превышает 8

единиц. Синие кривые получены из данных записанных при увеличении (NE) и (TW),

уменьшении (TE) и с увеличением числа суммированных сигналов для улучшения уровня

(S/N). В этом случае время Т2 представлено бимодальным распределением с максимумами

на отметках 7 и 100 мсек. и кумулятивной пористостью выше 18 единиц.

Планирование выполнения ЯМР в скважине может быть осуществлено в три шага:

1. Определить ЯМР-свойства пластовых флюидов (T1,bulk ,T2,bulk D0 и HI);

2. Оценить ожидаемые результаты ЯМР (спект спада, поляризация, кажущаяся

пористость) в интервалах записи;

3. Выбрать наборы параметров активации и определить соответствующие

величины (TW, TE, NE);
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Рисунок 8.1   Спектры
распределения Т2 могут

значительно различаться в
зависимости от параметров

записи. В данном случае
красные кривые представляют
результаты полученные при

записи с неправильно
выбранными параметрами.
Голубым цветом показаны
кривые полученные при
оптимально заданных

параметрах.
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Все аспекты планирования работ в этих трех шагах уже были полностью рассмотрены в

предыдущих главах. В данной главе будет представлено обобщение этих вопросов и

иллюстрация ряда примеров. Первый пример будет использован в нескольких основных

разделах этой главы.

Определение ЯМР-свойств пластовых флюидов
При записи ЯМР каротажа, следующие свойства пластовых флюидов играют важную

роль:

� Продольное время объемной релаксации (T1,В);

� Неограниченная диффузия характеризующаяся коэффициэнтом (D0);

� Углеводородный индекс (HI);

Эти значения могут быть получены лабораторными измерениями в смоделированных

пластовых условиях, либо измерениями при атмосферных условиях результаты которых

затем экстраполируются к пластовым или корректируются из общих закономерностей (в

виде палеток или эмпирических уравнений). 1-9 Оценка параметров времени объемной

релаксации, углеводородного индекса и коэффициэнта диффузии может быть сделана по

эмпирическим зависимостям, приведенным в таблице 8.1.

Таблица 8.1 – ЯМР-свойства флюидов

Время объемной

релаксации 

T1,B , T2,B, (сек.)

Коэффициэнт

диффузии D0 (10–5

см2/сек)

Углеводородный 

Индекс

 HI

Вода
�298

3 T
�

�298
3.1 T

�

1�

Нефть
�298

1.2 T
�

�298
3.1 T

�

1�

Газ
17.1

4105.2
T
�

��

�

9.0
2105.8 T

�

��

�25.2
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В этих уравнениях Т – пластовая температура в градусах Кельвина, �- вязкость в

пластовых условиях в санти Пуазb, � - плотность газа в в пластовых условиях г/см3.

Плотность газа может так-же быть получена по данным испытания скважины или

рассчитана по уравнению состояния 10, либо снята непосредственно с палетки на рисунке

8.2. Вязкость нефти может быть померяна, получена из данных других работ

выполненных на месторождении, или грубо оценена по таблицам и другим источникам

информации о нефти.11
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Рисунок 8.2   Синее кривые показывают связь плотности природного
газа (C1.1H4.2) и давления для заданной температуры. Температура возрастает
от верхней кривой (100°F) к нижней (350°F) с шагом в 50°F. Стрелками
показана оценка плотности газа (0.23 г/см3) при давлении 8,700 psi и
температуре 300°F.
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Пример 1: РНО, газ

Описание скважины

Выполнение работ методом ЯМР было запланировано в газоносной скважине

пробуренной на РНО. Скважина вскрыла продуктивный пласт на глубине 20,000 футов,

где максимальльное давление и температура были, соответственно, 8,700 psi и 300�F.

Пример 1, шаг 1: определение ЯМР-свойств флюидов

Плотность газа в пластовых условиях определяется по палетке на рисунке 8.2.

Пересечение изобары (красная стрелка) с кривой зависимости плотности для температуры

300�F дает значение плотности газа (черная стрелка) в 0.23 г/см3.

Температура переводиться из градусов Фаренгейта в градусы Кельвина:

� � � �� � � � KFTKT 4222733230027332 9
5

9
5

�������

Свойства газа, были рассчитаны, согласно уравнениям, помещенным в твблице 8.1:

)(  9.4
422

23.0105.2105.2 17.1
4

17.1
4

,1 s
T

T gas �����

�

)/(  1085
23.0

422105.8105.8 25
9.0

2
9.0

2
,0 scmTD gas

���

������

�

52.023.025.225.2 ���� �gasHI

Экстраполяция свойств фильтрата РНО, померянных в лабораторных условиях к

пластовым условиям дает следующие величины:

)(  1.1,1 sT mf �

)/(  105.2 25
,0 scmD mf

�

��

1�mfHI

Для многих буровых растворов сервисные компании могут предоставить эти данные. В

противном случае, они должны быть померяны в лабораторных условиях.
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Свойства пластовой воды в этих условиях (т.е. в порах) оцениваются как:

)(  1,1 sT w �

)/(  101 25
,0 scmD w

�

��

1�wHI

Оценка ожидаемых спектров спада пластовых флюидов в коллекторе
Спектр распределения Т2 в смеси вода-нефть-газ в коллекторе, является суммой спектров

от трех жидких составляющих. Газ всегда является несмачивающей жидкостью 11 и его

спад описывается одной экспонентой со скоростью релаксации (или постоянной спада)

определяемой по:

� �

12
11

2

,,2,2

GTED
TT

g

bulkgg

�
�� (8.1)

где Т2,g – объемное Т2 для газа, Dg – коэффициэнт само-диффузии (которому для целей

планирования может быть приписано значение свободной диффузии) � – гиромагнитный

коэффициэнт, G - градиент магнитного поля воздействующего на молекулы и TE – время

между эхо-сигналами использованное в цикле CPMG. Для первой апроксимации G –

градиент поля скважинного прибора (т.е. не учитываются градиенты магнитного поля

породы).

Поскольку большинство коллекторов считается гидрофильными, то релаксация нефти

зависит от её объемной релаксации и эффектов диффузии. Большая часть сырых нефтей

представляют собой смесь различных алканов, у каждого из которых имеется собственная

скорость релаксации (T2,o)i соответствующая:

� �
12

11 2
0

,,2,2

GTED
TT

ibulkoio

�
�

�
�
�

�

�
�
�

�
�

�
�
�
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(8.2)
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Сигнал от нефти является наложением всех этих индивидуальных составляющих которые

формируют спектр релаксации. Диффузия оказывает большее влияние на легкие алканы

(на Т2 – длинном конце спектра релаксации), чем на тяжелые (более вязкие) компоненты,

вызывая сдвиг в сторону коротких времен Т2 и сжатие (сужение) спектра. Спектр нефти в

градиентном поле может быть аппроксимирован одно-модальным распределением с

центром в T2,o.

� �
12

11 2
0

2,2

GTED
TT o

�
�� (8.3)

Где T2,o,bulk рассчитывается по формуле из таблицы 8.1. Отметим, что для несмачивающих

жидкостей T1 и T2, при отсутствии градиента, равны.

Часть спектра релаксации, которая приходит от пластовой воды, состоит из

многочисленных компонент отражающих вариации размера пор. Релаксация каждой

отдельной составляющей описывается как:
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Tw,bulk получают из таблицы 8.1, S/V – отношение поверхность-к-объему (удельная

поверхность) для данного класса пор и � - поверхностная релаксивность. В общем случае

�1 и �2 имеют различные значения. Измерения спектров спада времен T1 и T2 на 105

образцах пород, привело к оценке среднего значения T1/T2 в 1.65.12 Измерения

проводились при нулевом градиенте внешнего поля и TE = 0.16 мсек.
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1 10 100 1000T2 (мсек.)

Пластовая вода Фильтрат
РНО

ГазTE= 1.2 (мсек.)

1 10 100 1000T2 (мсек.)

Пластовая вода Фильтрат
РНО

ГазTE= 3.6 (мсек.)

1 10 100 1000T2 (мсек.)

Пластовая вода Фильтрат
РНО

ГазTE= 4.8 (мсек.)

1 10 100 1000T2 (мсек.)

Пластовая вода Фильтрат
РНО

ГазTE= 6 (мсек.)

1 10 100 1000T2 (мсек.)

Пластовая вода Фильтрат
РНО

ГазTE= 2.4 (мсек.)

Рисунок 8.3 Увеличение времени между эхо-сигналами ТЕ позволяет разделять
сигнал времени Т2 от флюидов с различной диффузивностью. Отмечается сужение
(сжатие) спектра при увеличении величин времени ТЕ.
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Пример 1, шаг 2а: оценка ожидаемого сигнала ЯМР (распределения Т2)

Значения ЯМР-свойств флюидов, полученные при первом шаге этого примера для

рассчета спектра релаксации T2 заменяются на уравнения 8.1 – 8.3., результаты

представлены на рисуне 8.3. Свойства пластовой воды были взяты для общего случая с

чистым песчаником, обладаюшим широким спектром пористости и хорошей

проницаемостью. Во многих случаях, для выполнения планирования, достаточно самого

общего представления о породе. Рассчет выполнялся для магнитного поля с градиентом

18 Гаусс/см., время между эхо-сигналами TE указано на рисунках.

Сигналы от всех флюидов перекрываются при стандартном значении времени TE равном

1.2 мсек. Увеличение этого параметра приводит к разделению ЯМР-сигнала и позволяет

различать отдельные составляющие. При условии, что существует достаточный контраст в

значениях диффузии, вариации в TE могут использоваться для выделения различных

компонент. Этот подход составляет основу для метода сдвига спектров (MSS)

применяемого для типизации флюидов.

Оценка ожидаемой кажущейся пористости ЯМР коллектора
Регистрируемый ЯМР сигнал приходит от всех флюидов находящихся в области

исследования, которые содержат атомы водорода. Согласно теории, рассмотренной в

главе 3, амплитуда сигнала (или кажущаяся пористость) измеренная при заданном

времени TE, является суммой составляющих от кажущейся пористости воды �w,app, нефти

�o,app и газа �g,app. Кажущаяся пористость каждого из перечисленных составляющих

является результатом общей пористости �, насыщения флюидом S, углеводородного

индекса флюида HI, и той частью ядер водорода флюида, которые были поляризованы за

время TW между циклами CPMG. Для газа:

� �gTTW
ggappg eHIS ,1/

, 1 �

�� �� (8.5)

И для нефти и для воды ЯМР-спад происходит по мульти-экспоненте, поэтому введение

поправок за поляризацию – сложный процесс. Большинство нефтей являются смесью
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различных алканов и регистрируемые амплитуды отражают разницу в углеводородном

индексе и значениях Т1 :

� �� ��
�

��
ioTTW

ioioappo eHIS ,,1/
,,, 1�� (8.6)

Аналогично, регистрируемые амплитуды сигнала от воды отражают различия в значениях

T1 которые связаны с различием в размере пор:

� �� ��
�

��
iwTTW

iwiwappw eSHI ,,1/
,, 1�� (8.7)

В большинстве случаев, если TW выбрано в три раза больше чем наибольшее значение T1

от нефти или воды, то поляризация почти однородная. Кроме того, хорошее приближение

достигается при предположении, что углеводородные индексы воды и нефти равны, в

этом случае кажущаяся пористость исследуемая прибором принимает вид:

� �� �gTTW
ggowapp eHISSS ,1/1 �

������ ��                                                                        (8.8)

Пример 1, шаг 2б: оценка ожидаемого сигнала ЯМР (кажущейся пористости)

Для рассчета относительной амплитуды поляризации как функции времени TW

показанной на рисунке 8.4., значения T1 для воды, фильтрата и газа, определенные при

первом шаге, использовались в уравнениях 8.5 – 8.7. Контраст в значениях T1 флюидов в

этом коллекторе позволяет, при помощи изменений времени поляризации, оценить их

вклад в регистрируемый ЯМР-сигнал. При величине TW = 3 секундам, сигналы от воды и

фильтрата РНО практически полностью поляризованы (>95%). Однако, при этом значении

TW регистрируется только 45% сигнала от газа. Полная поляризация газа требует

величины TW > 15 сек.

Выбор цикла активации
Для выполнения планирования и подготовки работ методом MRIL, для начала,

необходимо четко определиться с поставленными задачами. Ограничение задач ЯМР

определением пористости и проницаемости может позволить использовать стандартные
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активизации, которые дают возможность сравнительно быстрой записи. Расширение

области интересов и в первую очередь необходимость типизации углеводородов, приводят

к применению более сложных активациий, и как следствие – к снижению скорости записи.

Знание пластовых условий необходимо для оценки возможности применения

предпочтительной активации и оптимизации параметров записи для улучшения качества

результатов.

На основе современных представлений о физике ЯМР и поведении поровых флюидов в

пластовых условиях (давление и температура), для покрытия всего спектра основных

задач, были разработаны три «семейства» активаций, показанные на рисунке 8.5.

Каждый тип активаций служит для решения своих задач и оптимизирован для того, чтобы

давать данные для специфических методов обработки. Анализ этих данных методом

связанным с другой активизацией будет иметь весьма ограниченное применение и не

позволит решить поставленные задачи.

Рисунок 8.4 В скважине, показанной в примере 1, относительная амплитуда поляризации для различных
флюидов, рассчитывалась как функция TW. При этом использовались следующие значения: T1,gas = 4.9 сек.,
T1,OBMF = 1.1 сек. и T1,water < 1 сек. Изменения величины TW для контроля вклада индивидуальных компонент
в суммарный сигнал, являются основой метода разностей спектра (DSM) применяемого при типизации
углеводородов.
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Двойное ТЕСтандартное Т2

Выбор активации

Анализ легких углеводородов

Анализ общей и эффективной пористости

Анализ вязких нефтей

Задачи MRIL

Двойное TW

1   10        100      1,000

T 2  (ms)

ДлинноеTW

1   10        100      1,000

T 2  (ms)

Частичная поляризация

1   10        100      1,000

T 2  (ms)

Короткое TE

Длинное TEКороткое TW ДлинноеTW

Рисунок 8.5
Активации выбираются в соответствии с задачами стоящими перед выполнением работ прибором MRIL
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Стандартная активация Т2

Данные стандартной активации Т2 позволяют определять пористость, проницаемость и

производительность (подвижные флюиды). (Термин стандартная активизация Т2 иногда

используется при измерении только эффективной пористости с TE =1.2 мсек.). Первые

поколения приборов ЯМР работали на одной частоте и поэтому позволяли только

стандартные активации Т2. Их использование ограничивалось применением в водоносных

зонах и для нефтей легких и средней вязкости, однако оно было расширено, после

осознания того факта, что выделение газа прибором так-же возможно. Стандартные

активации Т2 используются в настоящее время в многочастотных приборах и

преимущественно в ситуациях, где контраст T1 и D незначителен. В этих случаях

многократные активации с расширенными возможностями не дают дополнительной

информации. Преимущества стандартных активизаций Т2 – возможность увеличения

скорости записи при сохранении качества получаемых данных или получение данных

лучшего качества при обычной скорости записи.

Активация двойного времени TW

Запись с активацией двойного времени TW позволяет определить пористость,

проницаемость и производительность (подвижные флюиды), а так-же осуществлять

прямую типизацию углеводородов и их количественную характеристику, при

использовании метода разницы спектров (DSM)1 или анализа временной составляющей

(TDA).2

Активации с двойным TW используют разницу в значениях T1 воды и легких

углеводородов и позволяют определять их количество и распределение. При этом

несколько факторов ограничивают скорость записи: использование длинного времени TW

в одном канале записи, при сравнительно малой амплитуде сигналов от короткого

времени TW в другом канале, и необходимость высокого качества данных для

достаточного уровня сигнал/шум в сигналах от разности.
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Активация двойного времени TE

Записи с активацией двойного времени TE позволяют определить пористость,

проницаемость и производительность (подвижные флюиды), а так-же осуществлять

прямую типизацию углеводородов при использовании метода сдвинутого спектра (SSM),

анализа диффузии (DIFAN), или метода усиления диффузии (EDM). 3

При активизациях с двойным TE используется значительно больше вариаций в диффузии

вязких нефтей, воды и легких углеводородов, при этом задачей ставиться разделение

сигналов от углеводородов в области времен T2. Первоначальное их использование было

ограничено газоносными коллекторами, разрезами с легкими нефтями и применением для

качественной типизации пластовых флюидов. Однако, в последнее время, появились

многочисленные примеры их использования для количественного анализа, в основном,

благодаря применению методик расширенной интепретации. Это «семейство» активаций

так-же требует более медленных скоростей записи и высокого соотношения параметра

сигнал/шум.

Определение цикла активации и параметров записи
В предыдущих разделах были рассмотрены составляющие необходимые для разработки

активизации. В этом разделе предполагается, что заданы ЯМР-свойства флюидов и

коллектора, задачи выполнения ГИС определены и что выбран один из типов активации

(стандартная T2, двойное TW или двойное TE). Основываясь на этих данных, наша цель – в

общих чертах оценить оптимальные параметры активации и записи.

Для записи должна использоваться одна из заранее заданных активаций которая наиболее

близка к рассчитанному идеалу. Если ни одна из заранее созданных активаций не

подходит для решения поставленных задач, то на основании планирования и ограничений

рабочих параметров необходима разработка специальной активации.

Если некоторые или даже все необходимые параметры флюидов неизвестны, то для

создания оптимальной программы записи необходимо использовать их наиболее



Halliburton Energy Services
_____________________________________________________________________________________________

____________________________________________________________________________________________
 Глава 8                                                                                                                     Планирование выполнения работ прибором MRIL         246

консервативные оценки. Единственным недостатком этого подхода, является тот факт, что

рассчитанные таким образом активизации, вероятно, приведут к более долгому времени

записи. В последствии, по мере получения необходимой информации, это время может

быть значительно сокращено.

Стандартные активации Т2

Приборы серий MRIL-B и  MRIL-C не могли регистрировать быстрые спады ранних

времен эхо-сигналов от воды содержащейся в глинах и в пространстве микропористости.

Таким образом, их измерения пористости были связаны с эффективной пористостью.

Современные приборы скважинного ЯМР регистрируют эти ранние вступления и

позволяют мерять суммарную пористость.

Стандартные активации Т2 являются стоящими по умолчанию в приборах серий MRIL-

C/TP и MRIL-Prime. В этой активизации цикл с частичным восстановлением на одной

частоте повторяется 50 раз, а суммированные данные эхо-сигналов передаются на

поверхность. Интегрирование этой информации и данных стандартной записи сигнала Т2

позволяет рассчитывать общую (суммарную) пористость. Обычно, параметры активации

частичного восстановления имеют следующие значения: TE =0.6 мсек., TW =20 мсек. и N

=10.

В остальной части стандартной активации используются значения TE =1.2 мсек. и 0.9

мсек., соответственно, для приборов диаметра 6 и 47/8 дюймов. Разные значения TE

применяются для компенсации за различия в (среднем) градиенте магнитного поля у

приборов (15.6 и 20.0 Гаусс/см. для скважин соответственно большого и малого

диаметров) и для поддержания контраста в результирующих значениях (TE и G) 13. Выбор

соответствующих значений TE обеспечивает идентичное измерение кажущихся значений

времени спада T2 приборами разного типа.

Как показано на рисунке 8.6, полная поляризация, теоретически, требует бесконечного

ддлинного времени TW. Для практического применения используют поляризацию выше
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95%. Как показано в уравнении представленном ниже, такая поляризация достигается при

значениях TW � 3T1. 

1
/ 395.01 1 TTWe TTW

����
� (8.9)

В газоносных коллекторах такое требование может привести к увеличению значений TW

до 10 секунд и выше, что поставит серьезные ограничения по скорости записи и/или

частоте (количеству) измерений. Можно показать, что при стандартной обработке и

благоприятном соотношении сигнал-шум, решаются только скорости спада со значениями

в три раза большими, чем время измерения (NE TE), т.е. должно выполняться условие:

TE
T

NETNETE
3

3 max,2
max,2 ��� (8.10)

Оценка значения T2,max требует знания местных условий. В общем случае, величины T2 для

нефти и газа могут быть получены по палеткам изображенным на рисунке 8.7, которые

были рассчитанны для флюидов с параметрами представленными в таблице 8.1 и по

уравнениям 8.1 и 8.3, для градиента магнитного поля 18 Гаусс/ см.
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Рисунок 8.6 Относительная амплитуда поляризации как функция TW/T1, для
практических целей полная поляризация достигается при TW �  3T1.
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Пример1, шаг 3: определение подходящих параметров (TE, TW, NE) для стандартной

активации Т2

Для этой записи может быть использована стандартная активация T2 с TE =1.2 мсек. При

регистрации данных с TE = 1.2 сек., сигналы от газа и фильтрата РНО появятся

соответственно, на отметках 40 и 400 мсек. в спектре T2 (при значениях, T1,gas =4.9 сек. и

T1,mf =1.1 сек., определенных на первом шаге данного упражнения). Знание местных

условий дает нам : T1,water �1 сек., и T2,water �400 мсек.

Соответствующее число эхо-сигналов должно быть:
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Рисунок 8.7 Время релаксации T2 нефти и газа регистрируемое прибором ЯМР с градиентным
магнитным полем в 18 Гаусс/см. зависит от времени T1 объемной релаксации.
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Определение времени TW зависит от набора задач поставленных перед выполнением

ЯМР. Если необходимо полностью записать сигнал от газа, то время TW должно быть

больше чем 3х4.9 �15 сек. Если нужны данные только от полностью поляризованных

воды и фильтрата РНО, то будет достаточно и TW = 3сек.

Активации двойного времени TW
Для выполнения активации двойного времени TW необходимо задать параметры TWL,

TWS, TE и NE. Если считается, что вода полностью поляризована, то кажущаяся

пористость �a определяется по:

� �� �hcTTW
hchcwa eHISS ,1/1 �

����� (8.11)

Уравнение 8.12 определяет постоянные a, b и c, следующим образом:

� �1,1,1
,1,1

,1

,1

���

�

��

�

cba
cTT

abTbTWTW
aTTW

whc

wSL

wS

(8.12)

Объединение уравнений 8.11 и 8.12 приводит к следующим выражениям значений

кажущейся пористости, померянных при длинных и коротких временах задержки :

� �� �
� �� �ca

hchcwSa

cab
hchcwLa

eHISS

eHISS
/

,

/
,

1

1
�

�

���

���

��

��
(8.13)

Сигнал от разности �� получают непосредственно вычитанием сигнала с коротким TW из

сигнала с длинным временем TW.
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Для исключения влияния воды в сигнале от разности, необходимо, чтобы она была

полностью поляризована в обоих случаях – и с длинным TW, и с коротким. Это условие

выполняется, если waterSL TTWTW ,13��� , или если � �waterTa ,13� , где T1,water- самое длинное

время T1 связанное с водой в порах.

� �� �cabca
hchc eeHIS // ��

��� �� (8.14)

Для любого значения a большего 3, доля от полного сигнала углеводородов, остающаяся в

сигнале от разности, зависит только от безразмерных параметров b и c, т.е. является

функцией отношений TWL к TWS и T1,h к T1,w, что выражает контраст в значениях T1 между

водой и углеводородами. Для a =3 эта зависимость изображена графически на рисунке 8.8. 
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Пример 1б шаг 3: определение подходящих параметров (TWL, TWS, TE и NE) для

активации двойного времени TW

В этом примере может так-же быть использована активация двойного времени TW. Для

конкретной скважины соответствующие времена имеют значения T1,gas =4.9 сек., T1,mf =1.1

сек. и T1,water �1сек. (см. шаг 1 данного примера), указывающие на контраст в значениях T1

газ-вода c =4.9. Согласно данным палетки на рисунке 8.8, такой контраст будет

соответствовать максимальной поляризации в пределах 0.5 – 0.6; стрелками на рисунке

показано, как получают наилучшее соотношение TWL/TWS, равное 5.5. Эта величина

является результатом самого малого значения TWL, которое приводит к получению

сигнала от газа в пределах 0.5 – 0.6 от максимума. Соответствующие значения TW :

.5.165.5
.33 ,1

секTWTW
секTTW

SL

waterS

��

��

Во время шага 2, в данном примере, было показано, что сигналы от пластовой воды

растянуты на участке времен спектра T2 до 400 мсек., и что появление сигнала от газа

ожидается на 40 мсек. Максимальное время релаксации определяется величиной 400

мсек., которая потребует по крайней мере 400/(1.2х3)= 110 эхо-сигналов.

Для активации двойного времени TW используются следующие параметры: 

Активация 1:    TE =1.2 мсек.,    N =110,    TWL =16.5 сек.

Активация 2:    TE =1.2 мсек.,    N =110,    TWS =3 сек.

При такой активизации двойного времени TW, разница от сигнала газа достигает

максимума, однако собственно значения пористости, насыщенность углеводородами в

объеме исследования и углеводородный индекс в пластовых условиях определяют будет

ли сигнал достаточно велик, чтобы он мог быть измерен.
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Средняя пористость в этой скважине составляет около 14 единиц, предполагается, что

газонасыщенность в зоне проникновения находиться на остаточном уровне 30% и что

углеводородный индекс газа равен 0.52 (см. шаг 1 данного упражнения). Подставляя эти

значения в уравнение 8.14 получаем

� � пористостиедee .1.151.02.252.03.014 9.4/5.169.4/3
��������

���

Такой уровень сигнала располагается едва над порогом чувствительности этой методики и

появиться в спектре разности на отметке 40 мсек.

Весь этот процесс можно повторить, чтобы показать, что активизация двойного времени

TW так-же позволяет успешно избавляться от сигнала фильтрата РНО из зоны

проникновения (T1,obmf = 1.1 сек.) в спектре разности. При увеличении значения T1

фильтрата описанный процесс, для определения нового сигнала от фильтрата, потребует

минимальных изменений. Для планирования приемлимых значений TW необходимо

оценить контраст значений T1 газа и фильтрата РНО. Такая оценка показана в примере 2.

Пример 2: РНО, двойное время TW

Описание скважины

Планироване работ методом ЯМР выполнялось для скважины с теми-же пластовыми

условиями, что и в примере 1, но для других параметров фильтрата РНО. Так-же как и в

прмере 1 газоносная скважина была пробурена на РНО с глубиной забоя 20,000 футов и

максимальными значениями давления и температуры, соответственно, в 8,700 psi и 300� F. 

Шаг 1: определение ЯМР-свойств флюидов

Параметры газа и пластовой воды такие-же, как и в предыдущем примере. Аналогично,

свойства фильтрата РНО были померяны в лабораторных условиях и затем

экстраполированы на пластовые. Рассчитанные свойства относящихся к делу газа,

фильтрата РНО и пластовой воды собраны в первых трех колонках таблицы 8.2.
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Таблица 8.2 – Пример 2: ЯМР-свойства флюидов в пластовых условиях

T1 (сек.) D0 (см2/сек) HI T2D (мсек.)

Газ 4.9 85 х 10-5 0.52 40

Фильтрат РНО 2.5 2 х 10-5 1 800

Пластовая вода < 1 1 х 10-5 1 < 400

Шаг 2: оценка ожидаемого ЯМР-сигнала

Приведенные в таблице значения T1 использовались в уравнениях 8.5 – 8.7 для рассчета

поляризации как функции TW, результаты показаны на рисунке 8.9. Графики показывают,

что полная поляризация пластовой воды, фильтрата и газа потребует, соответственно,

значений времени TW в 3, 8 и 15 секунд. Значения времени T2 для прибора MRIL, с

градиентом магнитного поля 18 Гаусс/см и временем между эхо-сигналами 1.2 мсек.,

были определены по графикам на рисунке 8.7 и представлены в таблице 8.2 в колонке T2D.

Шаг 3: определение подходящих параметров (TWL, TWS, TE и NE) для активации

двойного времени TW

Уничтожение сигналов от фильтрата и пластовой воды в спектре разности требует полной

поляризации флюидов и накладывает ограничение: секTWTW SL 8�� . Критической

величиной, в данном случае, будет являться не контраст в значениях T1 между газом и

водой (т.е. c =4.9), а контраст между газом и фильтратом РНО (т.е. c =2). Нанеся это

низкое значение на палетку 8.8 получим, что доля поляризованного газа не превысит

уровня 0.2 – 0.3 и что наиболее приемлемое отношение времен задержки TWL/TWS = 3.5.

Следовательно, соответствующие значения TW равны:

.285.3
.83 ,1

секTWTW
секTTW

SL

OBMFS

��

��
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В таблице 8.2 показано, что наиболее длинные времена T2 при записи в данной скважине,

составляют 800 мсек., (фильтрат РНО), число эхо-сигналов, необходимое для его

регистрации, должно быть, по крайней мере, 800/(1.2х3)=220.

Для активации двойного времени TW используются следующие параметры: 

Активация 1:    TE =1.2 мсек.,    N =220,    TWL =28 сек.

Активация 2:    TE =1.2 мсек.,    N =220,    TWS =8 сек.

Величина сигнала разности от газа рассчитывалась аналогично предыдущему примеру: 

� � пористостиедee .42.019.02.252.03.014 9.4/289.4/8
��������

���
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Рисунок 8.9 В скважине из примера 2 относительная амплитуда поляризации была рассчитана как
функция времени TW в газе, фильтрате РНО и пластовой воде. Для рассчетов использованы значения
времени T1 приведенные в таблице 8.2.
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Получаемый сигнал ниже порога чувствительности и, следовательно, предложенный

метод записи не возможен. Кроме того, очень длинные времена TW для предложенной

активизации, не являются практичными, т.к. тут-же приведут к низким скоростям записи

и плохому вертикальному разрешению. 

При заданных условиях возможен альтернативный подход, который позволит избавиться

от сигналов воды и оставит достаточно сигнала от газа и фильтрата РНО в спектре

разности. На отметке c � 5 (рисунок 8.8) соответствующий контраст в значениях TWL/TWS

будет в пределах от 5 до 6, а применимые к этому случаю значения TW, соответственно

1.5 и 8 сек. Показанный на рисунке 8.10 результат моделирования, свидетельствует о

четком разделении сигнала T2 от газа и фильтрата РНО, обеспечивающий их независимую

количественную оценку. Амплитуда газовой составляющей рассчитывается следующим

образом:

� � пористостиедee .2.154.02.252.03.014 9.4/89.4/5.1
��������

���

А амплитуда составляющей фильтрата РНО, соответственно:

� � пористостиедee .1.251.02.43.014 5.2/85.2/5.1
�������

���

Теперь, для активации двойного времени TW используются следующие параметры: 

Активация 1:    TE =1.2 мсек.,    N =220,    TWL =8 сек.

Активация 2:    TE =1.2 мсек.,    N =220,    TWS =1.5 сек.

Активации двойного времени TE
Для записи с активизацией двойного времени TE необходимо задаться параметрами TEL,

TES , TW и NE. Незначительный контраст значений T1 природного газа и фильтрата РНО

являлся помехой при попытке разделения этих флюидов методом двойного времени

задержки TW, рассмотренным в примере 2. Тем не менее, значительные отличия в
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сигналах T2 от газа и фильтрата, являющиеся результатом различий в их диффузии,

позволили разделить и количественно охарактеризовать эти флюиды. В более общем

случае, если для установки разницы в области спектров контраст диффузии полученный

при стандартной активизации недостаточен, то кажущийся контраст может быть усилен

записью с двойным временем TE (см. рисунок 8.3).

Пример 3: РВО, вязкая нефть, двойное время TE

Описание скважины

Скважина была пробурена на РВО и вскрыла коллектор с вязкой нефтью. 

Шаг 1: определение ЯМР-свойств пластовых флюидов

Соответствующие свойства флюидов, представлены в таблице 8.3. ЯМР свойства

фильтрата РВО идентичны свойствам пластовой воды. Отметим, что время T1 пластовой

воды короче, чем ее объемное значение и что оно представляет собой распределение

отражающее структуру порового пространства породы, а не единичное значение.

Табличная величина T1 представляет собой логарифмическое среднее распределения T1.

Таблица 8.3 – Пример 2: ЯМР-свойства флюидов в пластовых условиях

T1 (сек.) D0 (см2/сек) HI T2D (мсек.)

Пластовая нефть 0.5 0.2 х 10-5 1 486

Пластовая вода < 0.8 1 х 10-5 1 < 400

Шаг 2: оценка ожидаемого ЯМР-сигнала

Приведенные в таблице значения T1 использовались в уравнениях 8.5 – 8.7 для рассчета

поляризации как функции TW, результаты показаны на рисунке 8.11. Распределения

сигнала T2 для различных значений времен TE (при градиента магнитного поля 18

Гаусс/см.) от всех составляющих представлены на рисунке 8.12.
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Шаг 3: определение подходящих параметров (TEL, TES, TW и NE) для активации

двойного времени TE 

Изучение рисунков 8.11 и 8.12 говорит о том, что стандартная запись T2 и запись с

двойным временем TW не дадут достаточной дифференциации флюидов и не позволят

количественно оценить их объемы. При стандартной активации TE =1.2 мсек., все

имеющиеся в наличии флюиды будут иметь сходные характеристики времен спада T2 (от

300 до 5000 мсек.). Вариации значений времени TW приведут к равному уменьшению

сигналов от нефти и фильтрата РВО и одновременному их исключению из разностного

спектра. 

Для оценки различий в кажущихся значениях T2 как функции TE для «свободной» воды и

нефти, в данной скважине, могут использоваться уравнения 8.3 и 8.4. Результаты

представленные на рисунке 8.12 показывают полное разделение сигналов от нефти и

воды, из-за различий диффузии флюидов, при времени между эхо-сигналами

превышающем 4.8 сек. Большие значения диффузии воды, по сравнению с диффузией в

нефти, при увеличении времени между эхо-сигналами, приводят к уменьшению

кажущихся времен T2.

Аналогично предыдущему примеру, соответствующее число эхо-сигналов оценивается по

самой медленной компоненте (T2 ~800 мсек.) и при стандартном времени между эхо-

сигналами равняется 800/(1.2х3)=220. Увеличение времени между эхо-сигналами до 4.8

мсек. приводит к уменьшению числа измерений 220/4 = 55. Соответственно, предлагаются

новые параметры активации двойного времени TE:

Активация 1:    TES =1.2 мсек.,    N =220,     TW = 3 сек.

Активация 2:    TEL =4.8 мсек.,    N =55,       TW = 3 сек.

Для записи с активацией двойных времен TE и TW необходимо задаться параметрами TEL,

TES , TWL, TWS и N.
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Рисунок 8.10 В примере 2 запись с двойным TW и отношением TWL/TWS
равным 28/8 позволяет уничтожить сигналы от пластовой воды и фильтрата БР в
спектре разности и усилить разностный сигнал газа (верхние три блока). Однако
сигнал разности весьма небольшой и требует медленной скорости записи из-за
больших времен (две нижних блока). В другом варианте - записи с двойным TW, при
отношении TWL/TWS  8/1.5, из разностного спектра уничтожается только пластовая
вода, а сигналы от газа и фильтрата РНО, в значительной степени раздвинуты на
диаграмме Т2, чтобы обеспечить их независимую количественную оценку.
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Двойное TW/двойное TE (исследование пласта с неизвестными

параметрами)
В предыдущих разделах детально рассматривалось составление наиболее высокоточных и

эффективных программ записи в случаях когда, в разумном приближении, заданы

параметры коллектора, пластовых флюидов и условий. Однако, нет никаких причин

ограничивать применение ЯМР каротажа только этими областями. Включение метода

ЯМР в набор исследований на разведочном этапе должно стать повседневной практикой,

поскольку он дает независимые от литологии измерения пористости, информацию о

проницаемости, оценку добывных возможностей, типизацию пластовых флюидов и

величину насыщения углеводородами. Основное преимущество наличия априорных
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Рисунок 8.11 В скважине из примера 3 относительная амплитуда поляризации
была рассчитана как зависимость от времени TW в пластовой нефти, фильтрате РВО и
пластовой воде. Для рассчетов использовались значения времени T1 из таблицы 8.3. У
фильтрата РВО и пластовой воды сходные ЯМР свойства, поэтому соответстующие им
кривые на графике совпадают.
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данных о пластовых условиях, -это возможность оптимизации параметров записи с целью

получения специфичной информации при минимизации времени записи.

Показанный в предыдущих примерах подход, состоящий из трех последовательных

шагов, так-же применим для пластов с неизвестными условиями, где запись с

активациями двойных времен TE и TW может быть наиболее информативной. Ниже

следует описание трех шагов такого подхода:

Шаг 1: определение ЯМР-свойств пластовых флюидов

Введите значения пластовой температуры и давления и по рисунку 8.2 и таблице 8.1

определите величины времен объемной релаксации, диффузивности и углеводородных

индексов флюидов (нефть, газ, вода). (В случае если температура и давление в пласте

неизвестны, предположите градиент давления равным гидростатике т.е. 0.433 psi/фут, и

температурный градиент 0.015� F/фут). Аналогичная информация о фильтрате бурового

раствора должна быть получена от заказчика, либо так-же быть рассчитанна

соответствующим образом. Для планирования работ ЯМР в чистых песчаниках, при

отсутствии других данных, приблизительные значения распределения T2 в пластовой воде

должны находиться в пределах от 1 мсек. – и до T1,bulk /2.5. В глинистых коллекторах или в

пластах содержащих парамагнитные материалы, эти значения могут быть меньше раз в 10.

В карбонатах консервативные оценки распределения T2 воды указывают на значения от 1

мсек. – и до T1,bulk.

Шаг 2: оценка ожидаемых результатов ЯМР

Времена объемной релаксации рассчитанные при первом шаге затем используются для

оценки степени поляризации как функции времени задержки TW, для проверки

пригодности активации двойного времени TW и для подавления одной (или нескольких)

компонент в сигнале разности. Этот шаг позволит определить соответствующие значения

времени TW.
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Рисунок 8.12 В примере 3 значения времени T2 для воды, нефти и фильтрата РВО сдвигаются в
сторону меньших значений при возрастании TE. Кажущееся T2 нефти “отстает” от времен двух других
флюидов из-за низкой диффузивности нефти.
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Уравнения 8.1 – 8.4 используются для рассчета средних значений времен T2D

соответствующих флюидов, т.е. кажущихся времен релаксации как функции TE, при

заданном градиенте поля 18 Гаусс/см. Эти результаты могут использоваться для проверки

возможности разделения флюидов во временном спектре T2 при увеличении TE (метод

сдвига спектра).

Шаг 3: определение подходящих параметров (TWL, TWS, TEL, TES, NEL и NE)

Наиболее приемлимые времена поляризации для активации с двойным TW, при

стандартном времени между эхо-сигналами (TE =1.2 мсек.), приводят к следующим

значениям:

TWS = 3 T1,max пластовой воды

TWL = 3 T1,max углеводородов

Наиболее длинные времена T2D из рассчитанных на втором шаге, определяют

необходимое число эхо-сигналов для этих активизаций:

NE = T2D,max/(3*TE)

Для использования контраста в значениях диффузии должен быть записан

дополнительный набор сигналов с активацией с более длинным TE ( т.е. 4.8 мсек.) и

получено соответствующее число эхо-сигналов. Интеграция всех данных позволит

получить информацию о коллекторе и о свойствах пластовых флюидов.

Пример 4: РНО, газ, двойное TW, и TE

Описание скважины

Во время бурения разведочной скважины на нефть было отмечено высокое содержание

газа свидетельствующее о наличии небольшой газовой шапки. Шламмограмма показала

присутствие песчаников и незначительное содержание аргиллитов. Скважина была

пробурена на РНО с глубиной забоя 12,000 футов, аномальных температур или давлений

не отмечалось.
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Шаг 1: определение ЯМР-свойств пластовых флюидов

Температура и давление в пластовых условиях на забое определены следующим образом:

12,000х0.015 = 180� F (355� К) и 12,000х0.433=5,196 psi. Экстраполяция измеренных в

лабораторных условиях свойств фильтрата к пластовым условиям дала:

)(  5.1,1 sT mf �

� �scmD mf /  1092.0 25
,0

�

��

1�mfHI

Плотность газа при 180� F и 5,196 psi., в соответствии с рисунком 8.2, составляет 0.21

г/см3. Остальные свойства газа рассчитываются по уравнениям приведенным в таблице

8.1:
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По опыту предыдущих работ в этом районе, наиболее вероятным типом углеводородов

здесь является нефть с низким газовым фактором и вязкостью около 3 сантиПуаз.

Используя эти данные и уравнения из таблицы 8.1 свойства нефти и пластовой воды,

соответственно:
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1wateroil �� HIHI

ЯМР-свойства пластовых флюидов для этой скважины представлены в таблице 8.4. 

Таблица 8.4 – Пример 4: ЯМР-свойства флюидов в пластовых условиях

(TE =1.2 мсек., G = 18 Гаусс/см.)

T1 (сек.) D0 (см2/сек) HI T2D (мсек.)

Фильтрат РНО 1.5 0.92 х 10-5 1 500

Газ 5.4 80 х 10-5 0.47 45

Нефть 0.84 0.52 х 10-5 1 325

Пластовая вода < 1 1.5 х 10-5 1 < 400

Шаг 2: оценка ожидаемых результатов ЯМР

Времена объемной релаксации, рассчитанные при первом шаге, используются для

построения семейства кривых поляризации, показанных на рисунке 8.13. Отметим, что

поверхностная релаксация и размер пор привели к укорачиванию времени пластовой воды

T1 ниже значения её объемной релаксации и, что наблюдаемый сигнал спада является не

одним значением, а распределением, и отражает распределение порового пространства в

породе. Значения T1 приведенные в таблице являются средними логарифмическими

распределения T1.

Уравнения 8.1 – 8.4 так-же использовались для рассчета типичных распределений T2 в

данных флюидах при различных T1, эти результаты показаны на рисунке 8.14. 

Шаг 3: определение подходящих параметров (TWi, TEi, NEi)

Анализ всей информации собранной в таблицах и рисунках рассчитанных для флюидов в

этой разведочной скважине, показывает, что самые медленные компоненты T2

релаксируют со скоростью около 500 мсек. (фильтрат РНО при TE = 1.2 мсек.).
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Соответственно, необходимое число эхо-сигналов для этих медленных составляющих,

равно:

NE = 500/(3x1.2) � 133

Значительный контраст в значениях T1 между газом и остальными флюидами позволяет

использовать анализ разностей спектров или разности эхо-сигналов (временного домена).

Соответствующие значения времени TW = 16 и 5 мсек.

ЯМР-свойства пластовой нефти и фильтрата РНО весьма схожи. Любая пара значений

полученных активизацией двойного времени TW будет одинаково снижать обе

составляющие. Запись данных с TE = 6 сек., TW =5 сек., и 1.5 сек., позволяет исключить

сигнал воды из данных диффузии, что весьма упрощает процесс интепретации.
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Рисунок 8.13 В разведочной скважине рассмотренной в примере 4,
относительная амплитуда поляризации рассчитывалась как функция от времени TW
в газе, нефти, пластовой воде и фильтрате РНО. В рассчетах использовались
значения T1 из таблицы 8.4.
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Рисунок 8.14 Распределения сигнала T2 при различных значениях времени TE были рассчитаны для
пластовой воды, нефти, газа и фильтрата РНО в разведочной скважине, приведенной в примере 4.
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Для данной скважины предлагаются следующие наборы параметров для активизаций: 

Активация 1:    TE =1.2 мсек.,    NE = 300,     TW = 16 сек.

Активация 2:    TE =1.2 мсек.,    NE = 300,      TW = 5 сек.

Активация 3:    TE = 6 мсек.,      NE = 60,         TW = 5 сек.

Активация 4:    TE = 6 мсек.,      NE = 60,        TW = 1.5 сек.

Другие соображения при планировании работ прибором MRIL
При принятии решений о циклах активации пластовые условия обязательно должны

приниматься во внимание, поскольку они предопределят реальные времена поляризации

TW, время между эхо-сигналами TE и их число NE, скорость записи и параметр

(скользящее среднее) осреднения RA. Следующие характеристики являются наиболее

важными:

Тип коллектора (песчаник, карбонаты, мел, диатомит)

В большинстве случаев тип коллектора оказывает незначительное влияние на выбор

циклов активизации, но он безусловно играет важную роль при обработке и

интерпретации данных. В общем, поверхностная релаксивность у карбонатов �2 слабее,

чем у песчаников, что приводит к более низким скоростям релаксации. Следовательно,

для разделения свободных и связанных флюидов надо использовать различные граничные

значения T2 (как правило эти значения составляют 33 мсек., для песчаников и 90 мсек., для

карбонатов, отметим однако, что эти величины были получены эмпирически и могут не

работать в некоторых областях).

Любые породы обагощенные железом или, в более общем виде, – содержащие

парамагнитные включения, могут значительно усилить поверхностную релаксацию и

привести к сдвигу спектра распределения T2 в сторону более коротких времен, при этом

исчезает возможность использовать стандартные величины граничных значений. При

значительных количествах парамагнитных включений, релаксация может стать более
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быстрой и не будет регистрироваться, в этом случае пористость померянная ЯМР

окажется заниженной.

Относительно большие изолированные поры (т.е. не сообщающиеся поры которые не

пропускают через себя флюиды) часто встречаются в карбонатных разрезах. Приборы

ЯМР будут давать правильные показания пористости, но проницаемость, рассчитанная по

стандартному алгоритму не будет соответствовать действительности (её рассчитанные

значения будут выше реальных). Стандартные модели, как правило, недооценивают

проницаемость «усиленную» за счет трещинноватости. Потенциальное наличие крупных

пор и более маленьких значений �1 означает, что максимальное значение T1w, может быть

несколько большим в карбонатах, по сравнению с песчаниками.

Смачиваемость

В большей части разделов данной книги породы считались гидрофильными. Для случаев с

водой и газом это предположение выполняется практически всегда, однако в случаях с

нефтью и водой ситуация может быть и другой. При смешанной смачиваемости в обоих

составляющих – и в нефти и в воде происходят и объемная релаксация, и взаимодействие

с поверхностью порды. Следовательно, их спектры будут смешаны и появятся на

временах меньших, чем при объемной релаксации. Спектры зависят от отношения

поверхности смоченной водой - к объему воды и от поверхности смоченной нефтью - к

объему нефти. В этом случае интерпретация ЯМР становится очень сложной и её

возможности не так хорошо изучены как в случае с гидрофильной породой. Можно

сказать с уверенностью, что такие случаи потребуют применения активизаций с

многочислеными TE. Представляется маловероятным, что активации с различными TW

помогут разрешить эту проблему.

Тип бурового раствора (РВО, РНО)

В общем случае, качество данных полученных методом ЯМР выше в скважинах с РНО,

чем в РВО. Проводимость РНО значительно ниже, что снижает эффекты нагрузки на



Halliburton Energy Services
_____________________________________________________________________________________________

____________________________________________________________________________________________
 Глава 8                                                                                                                     Планирование выполнения работ прибором MRIL         270

систему передатчик-приемник. Это снижение позволяет записать больше эхо-сигналов и с

меньшим уровнем шума. Если у системы РВО повышенная проводимость (т.е.

сопротивление слишком низкое), то возрастает нагрузка, накладывая существенные

ограничения на выполнение работ скважинным прибором. Эта величина может достичь

такой степени, что прибор не сможет работать, как это показано на рисунке 8.15. Для

работы в более проводящих средах, в зависимости от диаметра скважины, может

применяться специальный чехол (флюидный экран) изолирующий часть воды от антенны.

Запись ЯМР сигнала в скважине с РНО не ограничена проблемами с проводимостью,

фильтрат раствора в поровом пространстве дает дополнительный углеводородный сигнал,

который может существенно затруднять интепретацию данных каротажа. Для снижения

интерференции сигналов от фильтрата РНО и собственно пластовых флюидов,

рекомендуется проводить исключительно внимательное планирование работ.

Большинство флюидов РНО обладают длинными временами релаксации Т1, а их

диффузия сравнима с диффузией воды. Эти обстоятельства затрудняют их разделение с

помощью методов сдвига или разности спектров.
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Рисунок 8.15 Зеленым цветом показаны области
устойчивой работы прибора MRIL-Prime при минимально
допустимом сопротивлении бурового раствора. Данные
записанные в области ограниченного применения (показаны
желтым) могут оказаться за пределами интервала калибровки
прибора. Обеспечение питания необходимой мощности так-же
может вызвать сложности в этом случае. Применение
флюидного экрана (специального чехла увеличивающего
диаметр прибора) для 6-дюймового прибора, значительно
увеличивает область устойчивой работы (правый слайд).



Halliburton Energy Services
_____________________________________________________________________________________________

____________________________________________________________________________________________
 Глава 8                                                                                                                     Планирование выполнения работ прибором MRIL         272

Компромисс между параметрами: скорость записи � точность (сигнал/шум, частота

измерений) � тип и детальность получаемой информации

При планировании бурения любой скважины определенное внимание должно уделяться

программе выполнения ГИС. Отношение сигнал/шум, в основном, контролируется

диаметром скважины и сопротивлением бурового раствора. При снижении уровня

сигнал/шум возрастает скользящее среднее (RA), которое должно поддерживать

необходимый уровень точности определений пористости. Общепринятая практика работ

требует, чтобы у измерений пористости было отклонение не более единицы (в

ед.пористости). Значение RA, в сочетании со скоростью записи, определяет вертикальное

разрешение скважинного прибора. Эти отношения для прибора MRIL-Prime и активации

MAX4 представлены на рисунке 8.16. Графики хорошо иллюстрируют, что сопротивление

бурового раствора оказывает весьма значительное влияние на максимально возможную

скорость записи. При снижении сопротивления Rm ниже 0.1 Омм., значение RA возрастает

по экспоненте и, связанное с этим, стремительное снижение скорости записи

представляется достаточно очевидным.

Снижение вертикальной разрешенности в малоперспективных зонах или на участках с

однородным коллектором позволяет увеличить скорость записи. Она-же сдерживается

специфическими требованиями ЯМР: высокой точностью и низкой погрешностью

измерений, которые требуют ее снижения. Для наиболее часто употребимых актвизаций

были разработаны методы позволяющие оптимизировать скорости записи до максимума,

при снижении качества получаемых данных в пределах погрешности метода.
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Рисунок 8.16 Палетки скоростей применяемые при
активации MAX4  в приборе MRIL-Prime. Значение Rm
наноситься на левую палетку, после чего считывается
необходимое значение «скользящего среднего». Пересечение
этой величины с требуемым вертикальным разрешением (на
нижней палетке) дает скорость записи.
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Контроль качества является важным условием

при получении данных каротажом визуализации

магнитного резонанса. Для обеспечения наиболее

высокого качества данных используется система

контроля ошибок скважинного прибора и

индикаторы качества записи. Контроль качества

каротажа ЯМР включает поверку приборов до и

после регистрации, рабочую настройку,

регистрацию данных каротажа, визуальное

воспроизведение показателей качества и

окончательную проверку полевых материалов.

Данная глава содержит пять разделов: понятия и

определения необходимые для понимания

процесса оценки качества каротажа, поверка и

контроль, контроль качества во время записи,

визуальное воспроизведение показателей

качества и проверка качества после регистрации

каротажа.

Понятия и определения

Приращение и уровень Q
Приращение указывает на количество нагрузки передаваемой скважинными флюидами и

породами на цепь передатчика прибора скважинного MRIL. Приращение измеряется в

режиме реального времени с помощью измерительной обмотки (обмотки B1) встроенной в

прибор. Эта обмотка передает сигнал который принимается радиочастотной антенной.

_____________________
  Глава  9

Контроль 
качества каротажа 

MRIL
_____________________
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Прирост представляет собой отношение амплитуды сигнала принимаемого радио-

антенной, поделенной на амплитуду сигнала возникающего в измерительной обмотке.

Измерение прироста осуществляется как часть каждой последовательности импульсов.

Прирост зависит от частоты. Рабочая частота прибора должна быть настроена так, чтобы

его величина была максимальный.

Прирост измеряется, когда находящийся в скважине прибор испытывает на себе

воздействие как окружающей среды, так и цепи передатчика. Среди внешних факторов

влияющих на прирост, следует прежде всего выделить проводимость флюидов и, в

меньшей степени, сопротивление пласта. Буровой раствор и пласты с низким удельным

сопротивлением вызывают большее затухание сигнала нежели раствор и породы с

высоким сопротивлением что, соответственно, выражается в более низкой величине

приращения. Так как удельное сопротивление скважинных флюидов не меняется резко в

пределах обычного интервала записи, изменения в приращении возникают, как правило, в

результате изменений сопротивления пород или размера скважины при использовании

бурового раствора с низким сопротивлением.

Прирост никогда не должен быть нулевым. Неожиданные изменения или всплески в

приросте, как правило, указывают на проблемы возникающие в скважинном приборе.

Активизация каротажа визуализации магнитного резонанса направлена на достижение

определенного уровня качества: высокого Q, среднего Q или низкого Q. Как показано в

таблице 9.1., величина приращения определяет используемый уровень качества (Q).

Таблица 9.1 Определение уровня величины Q.
Приращение Уровень Q

>300 высокий Q
200–300 средний Q

<200 низкий Q
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B1 и B1mod

B1 представляет собой силу импульса Карр-Пурселл-Мейбум-Гилла который

осуществляет изменение направления и фазы протона. Как часть каждой

последовательности импульсов, B1 регистрируется с помощью измерительной обмотки.

Кривая B1 должна быть относительно постоянной, но слегка изменяться при изменениях

проводимости раствора в стволе скважины и пласте. B1 понижается в случае наличия

размывов и пластов с низким сопротивлением. Изменения происходящие в B1, колеблются

вместе с приращением в том же направлении, что и изменения происходящие в общей

проводимости.

Значение B1 с поправкой за температуру скважины называется B1mod. Она должна быть

приведена в соответствие с величиной B1, установленной в процессе поверки проведенной

в мастерской. Отношение между B1mod и B1 устанавливается с помощью:

)](0033.01[1mod1 ncalibratiomagnet TTBB ��� (9.1)

где T magnet является температурой магнита в скважинных условиях, а T calibration

представляет собой температуру магнита в поверочном резервуаре во время процесса

калибровки. Оба вида температуры измеряются по Цельсию.

Для того чтобы придать сигналу максимальную величину во время записи каротажа, B1

должна управляться в такой степени, чтобы B1mod оставалась в пределах 5% пикового

значения установленного в процессе поверки, проведенной в мастерской. В случае если

B1mod не остается в этих пределах, возникают следующие явления:

� Протоны изменяют направление недостаточно или слишком;

� Снижается отношение сигнал-шум в приборе и точность измерения

пористости;

Любое резкое изменение или всплеск показателей B1mod обычно указывает на проблемы

скважинного прибора которые необходимо устранить.
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Chi «� - Кай»

�  представляет собой уровень соразмерности между расчетной характеристикой спада и

записанными амплитудами эхо-сигналов. Кай является одним из основных показателей

качества каротажа которые отражаются визуально во время процесса записи. Величина

Кай, в целом, должна быть менее 2, но в некоторых случаях, когда наблюдается низкий

уровень качества, она может быть и выше 2. Даже если средний уровень Кай ниже 2,

резкие изменения или всплески показателей Кай обычно указывает на проблемы в

приборе, которые необходимо устранить.

Индикаторы шума: OFFSET (смещение), NOISE (шум), RINGING

(реверберация) IENoise (шумы между эхо-сигналами)
Как показано на рисунке 9.1, уровень шума при каждом цикле Карр-Пурселл-Мейбум-

Гилла (CPMG) определяется четырьмя видами измерения шума: смещение (OFFSET), шум

(NOISE), реверберация (RINGING) и межсигнальный шум (IENoise). Прежде чем

приступить к циклу CPMG, следует определить OFFSET и NOISE на основе анализа

сигнала окружающей среды. OFFSET является средним значением этого сигнала, в то

время как NOISE представляет собой стандартное отклонение. Для определения RINGING

и межсигнального шума применяется метод противофазных пар (PAP) описанный в главах

2 и 5. Совокупность противофазных пар в первом приближении не содержит сигнала.

Средняя величина этой суммы является RINGING и стандартное отклонение от суммы

представляет собой межсигнальный шум, который может быть приблизительно равен

величине NOISE, причем любая значительная разница между ними является признаком

шума производимого внутри зонда во время генерации импульсова передатчиком.

Четыре вида измерения шума играют роль показателей качества. Они проверяются, а

затем по ним вводиться поправка за условия записи, так же как и с эхо-сигналами и,

следовательно, они масштабируются в единицах пористости. Шум и межсигнальный шум

обратно пропорциональны приросту. Реверберация зависит от интервалов между эхо-

сигналами (ТЕ). Она будет более сильной для короткого ТЕ, чем для длинного ТЕ.

Например, максимальная реверберация для ТЕ = 1.2 мсек. равна примерно 40 единицам, в
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то время, как для ТЕ = 0.6 мсек максимальная величина составит 60 единиц. Рабочая

частота прибора должна выбаться такой, чтобы реверберация была минимальной.

Величины этих показателей должны находиться в допустимых пределах, как показано на

таблице 9.2. В шуме и межсигнальном шуме не должно быть всплесков.

При использовании многочастотного режима для каждой частоты регистрируется своя

характеристика шумов.

Таблица 9.2 Допустимые изменения в показателях качества записи

Показатель качества Допустимые изменения
NOISE < 10 (низкий Q); < 8 (средний Q); < 5 (высокий Q)
IENoise < 10 (низкий Q); < 8 (средний Q); < 5 (высокий Q)
Offset -30 to +30

RINGING -40 to +40 (TE = 1.2 мсек.), -60 to + 60 (TE = 0.6 мсек.)

шум

90°
импульс

180°
импульс

шум между эхо-
сигналами

смещение

эхо

реверберация

Рисунок 9.1
Для единичного цикла CPMG показаны различные элементы шума. Параметры: смещение

OFFSET , шум NOISE, реверберация RINGING и шум между эхо-сигналами IENoise  используются
для контроля качества записи. (Амплитуды импульсов цикла  CPMG и эхо-сигналов даны вне
масштаба).
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Датчики низкого напряжения
Для контроля качества регистрации каротажа ЯМР записывается целая серия показаний

датчиков низкого напряжения которые обеспечивают правильную работу электронного

блока. Каждый датчик должен иметь характеристики в пределах указанных в таблице 9.3

Таблица 9.3  Допустимые отклонения индикаторов шума

Маркировка
датчика

Мнемоника на дисплее
режима реального времени

отклонение

Ur 15 high 15VUP 19–24
+15 Analog 15V 14.8–15.2
-15 Analog 15VN -14.8– -15.2
15 Trans 15VT 14.8–15.2
Ur 15 low 15VUM 19–24
Unreg 5 v 5VUM 9.5–12.5
+5 Analog 5VA 4.9–5.1
-5 Analog 5VAN -4.9– -5.1
+5 Digital 5VD 4.9–5.1

Датчики высокого напряжения
Поверхностная система питания прибора каротажа ЯМР стремится удержать напряжение

в 600 вольт постоянного тока в конденсаторной батарее, что обеспечивает ток высокой

частоты необходимый для генерации сигналов Карр-Пурселл-Мейбум-Гилла. Как

правило, передаваемого с поверхности тока недостаточно для того, чтобы поддерживать

конденсаторы полностью заряженным во время серии эхо-сигналов и в результате

величина напряжения от конденсаторов снижается во время передачи цикла CPMG.

Прибор MRIL может компенсировать изменения напряжения. Собственно напряжение

конденсатора измеряется в начале и в конце цикла имульсов (эхо-сигналов), причем обе

величины представляются в реальном времени. В начале цикла напряжение определяется

как HVmax, а в конце - как HVmin.



Halliburton Energy Services
_____________________________________________________________________________________________

_____________________________________________________________________________________________
Глава  9                                                                                                                                             Контроль качества каротажа MRIL     280

В условиях высокого Q при 50 эхо-сигналах и TW ≥ 1500 мсек., HVmax должно быть

примерно таким же, как и напряжение, указанное на вольтметре панели питания.

Для стандартной записи T2, с активацией двойного TW и двойного времени ТЕ, HVmin

должно быть выше 400 вольт постоянного тока. Если это не достигнуто, прибор не сможет

компенсировать недостаток напряжения и, таким образом, уменьшится B1. Сокращение B1

обычно приводит к недооценке пористости, особенно на более длинных составляющих Т2.

При использовании активации общей пористости две серии сигналов идут

последовательно: стандартная активация Т2 используемая для определения пористости и

активация частичной поляризации для определения воды связанной с глинистой

компонентой. В этом случае, поскольку запись частичной поляризации следует

непосредственно за записью стандартной активации Т2, полученный HVmin является не

только напряжением в конце цикла эхо-сигналов Карр-Пурселл-Мейбум-Гилла для

эффективной пористости, но также и напряжением в начале активации частичной

поляризации. Таким образом, при регистрации каротажа общей пористости нельзя

допустить, чтобы HVmin упало ниже 450 вольт. 

Информация о фазовой коррекции PHER, PHNO, и PHCO
Сигнал ЯМР, регистрируемый антенной, поступает на фазочувствительнй детектор

дающий на выходе два канала данных (Канал 1 и Канал 2) с разницей в 90°. Поступающие

по обоим каналам данные могут быть представлены в качестве функции времени

поступления эхо-сигнала, как показано на рисунке 9.2а - для отдельного измерения и на

рисунке 9.2б для восьми совместных измерений. Эти данные могут быть так-же показаны

в виде графика взаимозависимости, как показано на рисунке 9.3а для отдельного

измерения и рисунке 9.3б для восьми совместных. 

Величина эхо-сигнала спада может быть рассчитанна:

)()()( 22 iEiEiE yxamp �� (9.2)
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где Eamp(i) является рассчитанной амплитудой для для ith эхо-сигнала, а Ex(i)

и Ey(i) являются амплитудами ith эхо-сигнала, соответственно, для каналов 1 и 2. Однако,

на этот расчет влияет спрямление и все шумы вносят свой вклад считаясь

положительными сигналами. Следовательно, кривая спада никогда не доходит до нуля, а

остается на некоторой небольшой величине, которая при инверсии эхо-сигналов

преобразовывается в длинные компоненты времени Т2. 

Для того, чтобы избежать проблемы ректификации шума, величина серии эхо-сигналов

может быть рассчитана и другим способом предназначенным для получения двух каналов

данных: в одном канале сигнал состоит, в основном, из собственно ЯМР, который должен

использоваться для дальнейшей обработки данных, а во втором канале - в основном из

шума с нулевой средней величиной. При этом угол φ рассчитывается на основе:

�

�

�

��

� k

i
x

k

i
y

iE

iE

2

21

)(

)(
tan� (9.3)

Где i является эхо-сигналом в серии эхо-сигналов спада, а k представляет

собой число эхо-сигналов используемых для расчета фазового угла. Обычно 2 ≤ k ≤ 9. Это

вычисление осуществляется после применения метода скользящего среднего. Этот угол

используется затем в качестве угла фазовой коррекции данных обоих каналов равной

вращению данных Канала 1 и Канала 2 через угол φ. После коррекции один канала

содержит в основном сигнал ЯМР (амплитуда которого является реальной частью серии

эхо-сигналов), в то время как другой канал содержит в основном шум (амплитуда

которого является воображаемой частью серии эхо-сигналов), как показано на рисунке

9.4. Реальная часть серии эхо-сигналов преобразуется в распределение Т2.

PHER представляет собой среднюю величину воображаемой части серии эхо-сигналов и, в

идеале, равен нулю. Практически же PHER должен быть менее одного при регистрации

достоверных данных. PHNO является стандартным отклонением воображаемой части

серии эхо-сигналов и по размеру должен быть сравнимым с другими показателями шума.

К тому же, рассчитанный угол фазовой коррекции обозначенный сокращением PHCO,

может быть представлен также как показатель качества. В случае если измеряемый сигнал
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является слишком слабым, PHCO указывает на случайные колебания с глубиной. Если же

измеряемый сигнал имеет достаточную амплитуду, PHCO остается стабильным по

глубине. Для каротажа двойного времени задержки и двойного времени между эхо-

сигналами, PHCOА, являющийся PHCO для длинного времени задержки, должен быть

таким же, что и PHCOВ, являющийся PHCO для короткого времени задержки. 

Температура
В процессе записи каротажа регистрируются три показателя температуры: Temp1, Temp2

и Temp3. Temp1 представляет собой температуру кожуха электронного блока, Temp2 –

температуру блока передатчика, а Temp3 – темпрературу собственно магнита. 

Поверка и контроль перед каротажем
Поверка прибора MRIL выполняется перед каждой работой в калибровочном резервуаре,

как это показано на рисунке 9.5. Перед выполнением каждой записи нет необходимости

проводить полную поверку, которая планируется лишь раз в месяц. Процедура поверки

должна осуществляться для каждой активации. Поверочный резервуар выполнен из

стекловолокна и покрыт тонким слоем металла. Резервуар служит контейнером

предназначенным для хранения образца воды, а также используется в качестве клетки

Фарадея для защиты от нежелательных фоновых сигналов. Поверочный резервуар в своей

первоначальной версии состоит из трех камер совмещенных с осью, вдоль которой

расположена антенна. Для поверки шестидюймового прибора внешняя камера

заполняется водой с добавлением сульфата меди, который значительно снижает время

релаксации T1 воды. Таким образом, чувствительный объем состоит на 100% из воды, а

так как вода обладает сравнительно коротким временем релаксации, процесс поверки

оказывается достаточно быстрым. Средняя и внутренняя камеры могут заполняться водой

разной солености для моделирования скважинных условий. При поверке приборов в 4½

дюйма (С) и ⅞ дюйма (Прайм) средняя камера заполняется водой с присадками, а

внутренняя камера заполняется соляным раствором с целью воспроизведения нагрузки



Каротаж ЯМР. Принципы и применение
____________________________________________________________________________________________

____________________________________________________________________________________________
283           Контроль качества каротажа MRIL                                                                                                                                    Глава  9

антенны. В новых вариантах имеется только одна камера, в которой скважинные условия

имитируются с помощью искусственной нагрузки.

Во время поверки в мастерской определяются следующие параметры:

� Сила импульса B1 необходимая для выработки максимума A0, где A0 является

амплитудой серии эхо-сигналов при нулевом времени (девяностоградусные и

стовосьмидесятиградусные импульсы имеют одинаковую амплитуду, но

разную длину).

� Отношение между B1 и A0, которое необходимо для введения “поправки

мощности”.

� Поправки эхо-сигналов 1 и 2 получаемые от так называемого эхо-эффекта

наведения.

Отношение между A0 и пористостью (в поверочном резервуаре максимум A0

настраивается на стопроцентную пористость).

Процедура калибровки
Процедура поверки включает проверку колебания частоты, эталонную поверку, а так-же

статистическую проверку резервуара. Перед выполнением каждой каротажной записи

проводится только эта последняя проверка.

Проверка качания частоты

Проверка качания частоты поводится с целью нахождения частоты обеспечивающей

наибольшее приращение. Во время проверки качания частоты используются средства

программного обеспечения с целью изменения частоты передатчика в достаточно

широком диапазоне с помощью измерительной обмотки, а так-же для определения

приращения прибора с помощью радиоантенны. Как показано на схеме частотного

распределения, представленной на рисунке 9.6, частота может иметь четко выраженный

максимум. В таком случае передатчик настраивается на эту частоту.
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Рисунок 9.2
После того как детектор фаз разделил данные полученные антенной на две составляющие,
сдвинутые на 90° (масштаб дан в единицах пористости) данные могут быть представлены
как функция времени (масштаб дан в миллисекундах). На графике (а) данные каждого
канала не суммировались, поэтому в сигналах большое количество помех. На графике (в)
суммированы данные восьми измерений и, соответствено, улучшено соотношение
сигнал/шум.
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Рисунок 9.3
Данные антенны сдвинутые на 90° (с рисунка 9.2) могут быть
сопоставлены между собой. На графике (а) амплитуды каналов до
суммирования; на графике (в), суммированы данные восьми измерений,
и, соответствено, лучше корреляция
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Рисунок 9.4
Данные антенны из канала 1 и канала 2 (с рисунков 9.2 и 9.3) могут быть
ротированы для уменьшения доли шумов. После ротации данные на
графике (а) группируются вдоль горизонтальной линии,
соответствующей нулевой амплитуде второго канала. Аплитуды первого
канала, на графике (в), представляют собой реальный эхо-сигнал и
используются для аппроксимации; амплитуды второго канала
представляют собой видимую часть спада эхо-сигнала.
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Проверка качания частоты имеет большое значение для правильной работы прибора. Эта

частота влияет на работу цепей передачи и приема прибора в двух аспектах. Во-первых,

если цепи передатчика и антенны не настроены на ту-же самую частоту и передача

мощности не эффективна, прибор может перегреться и выйти из строя. Во-вторых,

эффективность цепи приема резко снижается за пределами очень узкого диапазона

частоты, настроенного на резонансную частоту антенны. Следовательно, в случае

неправильного выбора рабочей частоты амплитуда регистрируемых эхо-сигналов будет

искусственно занижена, что приведет к падению отношения сигнал-шум. Точно так же,

если прибор выверен при неправильной частоте, при последующих каротажных работах

будут получены неверные данные.

Эталонирование
С помощью эталонной поверки определяется амплитуда импульсов CPMG, а также

отношение, необходимое для коррекции генерируемых и наведенных эхо-сигналов. При

этом записывается амплитуда эхо-сигналов 1 и 2, а амплитуда серии эхо-сигналов при

времени 0, A0 определяется с использованием кривой экспоненциального затухания,

определяемого от эхо-сигнала 3 до последнего эхо-сигнала. Затем определяются три

множителя (A0mul, E1mul и E2mul), которые выводятся совместно с амплитудой B1, как

показано на рисунке 9.7. A0mul представляет собой фактор, необходимый при

нормализации кривой спада для того, чтобы она показывала стопроцентную пористость в

воде поверочного резервуара. E1mul и E2mul являются функциями B1. Определение этих

множителей показано следующим образом:
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Где E1fit и E2fit представляют собой значения для эхо-сигнала 1 и эхо-сигнала 2,

рассчитываемые с помощью кривой построенной по точкам определяемым от эхо-сигнала
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3 до последнего эхо-сигнала. E1 и E2 являются измеренными амплитудами,

соответственно, эхо-сигналов 1 и 2. 

Для определения амплитуды при максимальной A0 необходимо, чтобы цикл импульсов

Карр-Пурселл-Мейбум-Гилла, генерировал девяностоградусное изменение направления

магнетизации и стовосьмидесятиградосное изменение фазы. Коррекция мощности для

величин B1, при которых вырабатываются импульсы менее или более 90 градусов,

призводится путем регрессии B1 и A0mul. Коррекция вызванного эхо-сигнала в отношении

эхо-сигнала 1 осуществляется путем регрессии B1 и Е1mul. Поправка вызванного эхо-

сигнала в отношении эхо-сигнала 2, как правило, представляет собой константу.

Корректировка B1 для A0 и Е1 осуществляется в соответствии со вторым порядком

многочленной формы:

CBAmul

CBAmul

EBEBEE

ABABAA

���

���

�����

�����

111
2

111

010
2

100 (9.5)

С целью определения A0-А, A0-В, A0-С, B1-А, B1-В и B1-С. Затем можно определить поправки

для величин диапазона B1.

Калиброванная пористость при каротаже MRIL определяется как:

mul
MRIL A

A

0

0
�� (9.6)

Данные по всем множителям и соотношениям включаются в таблицу по эталонной

поверке (таблица 9.4). Так как поверочный резервуар заполнен водой, указанное на

таблице T2R рассчитывается на основе экспоненциального затухания, приведенного в

соответствие с измеренной серией эхо-сигналов. Значение B1 регулируется на основании

изменений вносимых в параметры программного обеспечения, который называется

глобальной амплитудой, как показано в левой колонке таблицы 9.3. В отношении прибора

типа С, глобальная амплитуда шестидюймового зонда имеет величины, которые

колеблются от 70 до 135, а глобальная амплитуда для прибора в 4½ дюйма может

находиться между 40 и 80.
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Статистическая проверка в ёмкости

С помощью статистической проверки определяется реакция прибора в резервуаре

заполненном водой (т.е. со стопроцентной пористостью). Это делается перед каждой

каротажной записью и для каждого сочетания параметров времени между эхо-сигналами,

частоты и ожидаемого уровня Q. При различном времени задержки и разном числе

регистрируемых эхо-сигналов не требуется проводить дополнительной поверки. Она

проводится на приборе помещенном внутрь поверочного резервуара с использованием

величин, определяемых во время качания частоты и эталонной поверки. Рисунок 9.8 дает

пример предоставления данных при статистической проверке резервуара. Средняя

величина отклонения пористости померянной в таком резервуаре не должна превышать

2%.

Вид с боку Вид с торца

Камера Фарадея Камера скважины
Камера породы

MRIL зонд

Объемы измерения

Рисунок 9.5
Для моделирования влияния флюидов ствола скважины и 100% объема измерения,  камеры  в
калибровочной ёмкости для прибора MRIL заполняются водой с присадками.
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После каротажных работ окончательное подтверждение сигнала прибора достигается

путем проверки прибора в эталонном резервуаре после того как прибор поступил в

мастерскую. Для проверки постоянства реакции прибора всегда рекомендуется сравнивать

текущие данные поверки с прежними данными.

Результаты поверки прибора и статистической проверки ёмкости заносятся в журнал для

последующей сверки с основными данными этих операций. Для подготовки работы по

каротажу MRIL необходимо провести поверку каротажного зонда для каждой из основных

активаций и для ожидаемых скважинных условий.

Проверка электроники
После поверки необходимо предварительно проверить прибор, чтобы удостовериться, что

его электроника работает нормально. При этой проверке к электронике прибора

подключается контрольное устройство для измерения характеристик нескольких

внутренних параметров прибора. В таблице 9.4 показано сопоставление этих параметров и

их допустимых колебаний. Стандартное отклонение по всем характеристикам шума

должно быть проверено на основе таблицы 9.4 и использоваться в качестве эталона

пригодности. Так как эта проверка относится только к электронной системе прибора, сама

по себе успешная проверка не гарантирует правильной записи сигналов каротажным

прибором. Но если прибор не прошел эту проверку, он не должен использоваться.

Контрольные измерения должны повториться на месте выполнения работ (на скважине) и

после записи с целью получения значений до и после проведения каротажных работ. Эти

две серии параметров должны быть сверены друг с другом, причем величины полученные

до выполнения работ в скважине должны быть так-же сверены с величинами,

полученными при предварительной проверке.
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Рисунок 9.6  Распределение, показывает операционную частоту, при которой
достигается макимальное усиление.

Рисунок 9.7  Избражение основной калибровки: амплитуда импульсов CPMG при 90° повороте и 180°
перефазировке определяется по максимуму A0.  Зависимость оперативной корректировки находят по регрессии
B1 и A0 mul (красная линия). Стимулированное отношение коррекции для первого эхо-сигнала находят по
регрессии B1 E1 mul (зеленая линия). Стимулированное отношение коррекции для второго эхо-сигнала постоянная
величина (показана черными  звездочками).



Halliburton Energy Services
_____________________________________________________________________________________________

_____________________________________________________________________________________________
Глава  9                                                                                                                                             Контроль качества каротажа MRIL     292

Рисунок 9.8  В отчете по статистической проверке в калибровочной ёмкости,
измеренная пористость MPHI должна находиться в пределах 2% погрешности от 100 е.п.
Все индикаторы качества, такие как показатели шума и данные по напряжениям в
датчиках,  должны быть в пределах допустимых отклонений.
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При отдельной проверке A1RING и A1OFFSET являющиеся, соответственно, вызванным

сигналом и смещением для частоты 1 в многочастотном режиме, должны быть

приблизительно равны. Разница в более чем 5 единиц указывает на проблемы в

контрольном устройстве или в электронной системе прибора. A1NOISE и A1IENOISE

являющиеся, соответственно, шумом и шумом IE для частоты 1 в многочастотном

режиме, зависят от приращения и меняются в зависимости от системы прибора. Их

значения должны быть согласованы с каждой системой, причем любая разница

превышающая 2 единицы между значениями, полученными при предварительной

проверке и значениями, полученными при проверке до каротажных работ, а также между

значениями, полученными до и после работ на скважине, могут указывать на проблемы

скважинного прибора.

В таблице 9.6 представлен пример отчета о лабораторной проверке, показывающий

измеренные величины B1, приращения, шума, шума IE, вызванного сигнала, смещения,

Hvmin, Hvmax и температуры передатчика и блока, их ожидаемых диапазонов,

стандартных и допустимых отклонений.

Таблица 9.4 Таблица эталонной поверки прибора

MRIL SHOP CALIBRATION SUMMARY

PERFORMED:  20-Oct-1997  10:47
SERIAL NUMBER:  C093B124 MODEL:  MRIL-C

Activation:  12DFHQCAL

Amp AO T2R Gain E1Mu1 E2Mu1 AOMu1 B1

75
85
95

105
115
125

187.3
216.3
234.3
242.4
238.8
223.8

158.1
160.6
164.1
165.3
164.9
164.1

622.9
622.8
622.7
622.4
623.0
622.9

1.36
1.27
1.22
1.19
1.20
1.21

0.97
0.97
0.96
0.97
0.98
0.98

1.87
2.16
2.34
2.42
2.39
2.24

474.4
564.3
652.6
740.7
827.0
920.3

A0_A:  -6.86007E-06 A0_B:  0.010392 A0_C:  -1.51424
E1_A:  1.71249E-06 E1_B:  -0.00270606 E1_C:  225627
E2 Multiplier:  0.971747 A0 Chi:  1.3111E-05 E1 Chi:  1.9125E-05
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Таблица 9.5 Допустимые отклонения и диапазоны поля прибора MRIL

Низвание датчика Обычный диапазон Допустимое
отклонение

Стандартный
разброс

B1 450–750 ±25 7.5
A1NOISE <12 ±2 2.0
A1NECH <12 ±2 2.0
A1RING -30–30 ±2
A1OFFSET -30–30 ±2
GAIN 250–350 ±15 7.5
TEMP1 AMBIENT
TEMP2 AMBIENT
Hvmin 530–590 ±10 2.5
Hvmax 570–610 ±10 2.5
15VUP 19–24 0.005
15V 14.8–15.2 0.005
15VN -14.8– -15.2 0.005
15VT 14.8–15.2 0.005
15VUM 19–24 0.005
5VUM 9.5–12.5 0.005
5VA 4.9–5.1 0.005
5VAN -4.9– -5.1 0.005
5VD 4.9–5.1 0.005

Таблица 9.6 Пример отчета об эталонной поверке с допустимыми отклонениями

MRIL SHOP CHECK SUMMARY

PERFORMED:  22-Jun-1998  10:32
SERIAL NUMBER:  C179B011 MODEL:  MRIL

Statistical Check With Dummy Load    Performed:   29-Jun-1998   10:32
Activation:  cblkbox     Experiment Range:   50 - 150   
Field Verifier #   c107

SHOP EXPECTED RANGE STD. DEV. ALLOWABLE DEV

B1
GAIN
A1NOISE
A1INECHO
A1RING
A1OFFSET
HVMIN
HVMAX
Cart Temp
Tran Temp

301.436
342.010

2.704
2.530
5.106
2.310

586.445
602.381
32.486
33.047

450 – 750
250 – 350

<12
<12

-30 – 30
-30 – 30

530 – 590
570 – 610

         ~AMBIENT
         ~AMBIENT

0.534
1.700
0.646
0.381
0.505
0.967
0.000

       0.000
0.142
0.261

7.5
7.5
2.0
2.0
2.0
2.0
2.5
2.5
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Контроль качества во время записи
Рабочая частота

Рабочая частота прибора MRIL является основной частотой в поле B1. Прежде чем

приступить к выполнению каротажных работ, так-же как и до поверки, необходимо

проверить колебание частоты в скважинных условиях. В этом случае передатчик

настраивается на ту частоту, которая дает наибольший прирост при колебании.

Скважинные приборы MRIL типа C могут быть настроены на две частоты в двухчастотном

режиме, причем обе эти частоты могут быть выбраны из одного или двух частотных

диапазонов: стандартная частота (700-750 кГц) и низкая частота (600-650 кГц). Прибор

MRIL –Prime настраивается на девять частот: например, 760, 686, 674, 656, 644, , 626, 614,

596 и 584 кГц. Для изменения диапазона рабочей частоты прибора необходимо менять

аппаратуру в стационарных условиях. 

Скорость записи и скользящее среднее 
Скорость каротажа MRIL зависит от многих факторов. Палетки скорости записи

основываются на учете следующих факторов:

� приращение

� активация

� время поляризации

� тип прибора (С или Прайм)

� размер прибора

� вертикальное разрешение

� рабочая частота 

Данные, которые берутся из палеток скорости, имеют большое значение для выбора

нужного (минимального) параметра осреднения, основанного на приросте прибора. На

рисунке 9.9 показан пример палетки скоростей для прибора MRIL типа C. Для каждого

типа вертикального разрешения рассчитывается своя палетка (например для высокого или

стандартного разрешения). На рисунке 9.10 приводиться пример использования такой

палетки скорости.
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Рисунок 9.9  Палетки рассчитаны для определения скорости записи прибора MRIL-C работающего в
режиме двух частот и высокочастотной регистрации (700-750 кГц). Верхняя палетка применяется при высокой
вертикальной разрешенности (т.е. около 4 футов, для любого приращения); нижняя - при стандартном
разрешении (т.е. около 6 футов). Палетки такого типа рассчитаны для 6” и 41/2 ” зондов; одно- двух- и трех-
частотного режимов; и для активизаций стандартного Т2, двойного TE, двойного TW и суммарной пористости.

Для низкочастотной записи (600 - 650 кГц) необходимо:
увеличить величину скользящего среднего на 50% - округлить
до ближайшего и умножить на 8; снизить скорость записи на
33%.
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6” зонд
Стандартная
двойная
частота

Рисунок 9.10  На палетке рассчета скорости показано, что при приращении в 470,
времени задержки TW =3000 мсек., и требовании высокого вертикального
разрешения, скорость записи дролжна быть 17 футов/мин., а скользящее среднее
составлять 8. Как показано на графике, в этом случае будет достигнуто
вертикальное разрешение в 4 фута.

Для низкочастотной записи (600 - 650 кГц) необходимо:
увеличить величину скользящего среднего на 50% -
округлить до ближайшего и умножить на 8; снизить
скорость записи на 33%.
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Рисунок 9.10. На примере использования графика скорости предполагается (произвольно),

что приращение прибора составляет 470, причем требуется режим высокого разрешения и

время TW составляет 3000 мсек. Нужно начать с 470 на горизонтальной оси (прирост

двойной частоты) и спроецировать по вертикали до достижения красной кривой

параметра осреднения. В этой точке справа снять значение 8 по шкале скользящего

среднего. Продолжать проецировать по вертикали до достижения  штриховой кривой

вертикального разрешения. В этой точке, слева снять значение 4 шкалы вертикального

разрешения. Снова продолжать проецировать по вертикали до достижения синей кривой

скорости записи при TW = 3000 м. В этой точке слева снять значение 17 шкалы скорости

каротажа. С помощью примечания в нижней части графика объясняется, как

отрегулировать скорость каротажа и величину параметра осреднения, взятых из графика,

при использовании низкочастотного режима. 

Настройка В1 к скважинным условиям
При подготовке к каротажным работам очень важно отрегулировать B1 представляющее

собой силу импульсов Карр-Пурселл-Мейбум-Гилла, генерирующих изменения

направления магнетизации протона на 90° и изменение фаз на 180°. Величина B1 должна

быть изменена поправкой за температуру скважины. B1mod должен быть отрегулирован

так, чтобы он находился в пределах 5% пикового значения B1, установленного при

поверке в мастерской.

Мониторинг качества во время записи
Главное окно каротажа MRIL в программе Halliburton Excell-2000 представляет

большинство показателей качества в режиме реальном времени при приеме эхо-сигналов

CPMG (рисунок 9.11). Окно включает три колонки значений параметров, график серии

необработанных эхо-сигналов, а так-же график распределения времени T2 и инкрементное

распределение. В верхней части первой колонки даются основные параметры,

относящиеся к регистрации данных, такие как серийный номер, наименование активации,

рабочая частота, сила импульсов CPMG (амплитуд), TW, число эхо-сигналов, а также
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параметр осреднения. Нижняя часть первой колонки содержит основные коэффициенты

для поправок, такие как поправка мощности, поправка коэффициента усиления,

температурная поправка и  собственно поправка эхо-сигналов 1 и 2.

В верхней части второй колонки представлены измеренная пористость (ЯМР пористость),

рассчитанный ИСВ и ИСФ и подразумеваемое T2cutoff (33 мсек. для песчаников и 92 мсек.

для карбонатов). В нижней части второй колонки показаны основные показатели контроля

качества, такие как Кай, приращение, B1, B1mod и характеристики шума (смещение,

реверберация, шум, шум IE).

В третьей колонке представлены показания вспомогательных датчиков, такие как

температура 1, 2 и 3, зарегистрированная электронным блоком прибора, передатчик и

магнит, а так-же все данные датчика напряжения электронного оборудования. В случае

если значение любого показателя качества выходит за допустимые пределы, в окошке

появляется красный сигнал, предупреждающий специалиста о наличии проблемы.

Рисунок 9.11  Большинство индикаторов находятся в основном окошке MRIL, таким
образом, при регистрации эхо-сигналов CPMG можно следить за качеством записи.
Данные приведенные в этом примере, получены от эхо-сигнала записанного в
калибровочной ёмкости и соответствуют пористости 100%.
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Визуальное воспроизведение показателей качества записи

Все показатели качества заносятся в файл полевых данных и в случае необходимости

могут быть воспроизведены. Качество каротажа может быть визуально показано в

различных формах и форматах. Рисунок 9.12 представляет собой пример визуального

воспроизведения показателей качества. Дорожка 1 содержит данные по гамма-каротажу

(GR), скорости навивки троса (СS) и натяжения (TENS). Дорожка 2 включает приращение

(GAIN): GAINA (для группы А, также, как и ниже) и GAINB (для группы В, также, как и

ниже), амплитуду импульсов CPMG: B1A и B1B, а также амплитуду циклов CPMG,

измененную с поправкой на температуру: B1MODA И B1MODB. Дорожка 3 содержит все

данные о напряжении в датчиках. Дорожка 4 показывает три вида температуры:

передатчика (TXTA), электронного блока (ECTA) и антенны (ANTA). Кроме того, дорожка

4 показывает параметры коррекции фазы, такие как фазовые углы PHCOA и PHCOB,

среднее значение воображаемой части спада эхо-сигналов, PHERA и PHERB, стандартное

отклонение воображаемой части спада эхо-сигналов, PHNOA и PHNOB. Дорожка 5

содержит шум и шум IE для групп A, B и частот 1 и 2, таких как N1A (шум для группы А и

частоты 1), а также N1B, N1A, N2B, IEN1A, IEN1B, IEN2A и IEN2B. Дорожка 6 содержит

OFFSET и RINGING для групп А, В и частот 1 и 2. Дорожка 7 включает Кай для групп А и

В, ЯМР пористость от групп А и В, а также ИСВ от группы А. 

Такое визуальное воспроизведение представляет собой общий формат для различного

рода активаций, таких как C/TP, активации с двойным временем задержки (TW) и с

двойным временем между эхо-сигналами (ТЕ). При использовании активации C/TP группа

А представляет собой серию эхо-сигналов, полученных при времени задержки полной

поляризации, а группа В с временем ТЕ = 1.2 мсек., представляет собой серию эхо-

сигналов, полученных при времени задержки частичной поляризации и времени между

эхо-сигналами ТЕ = 0.6 мсек. При использовании активации с двойным временем TW

группа А состоит из длинных спадов TW, а группа В из коротких спадов TW. При

использовании активации с двойным временем ТЕ, группа А содержит спады с коротким

ТЕ, а группа В с длинными ТЕ.
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Рисунок 9.12  Дисплей качества каротажа MRIL включает кривые GAIN, B1, B1MOD,
данные напряжения датчиков, характеристики фаз эхо-сигналов и шумов, Chi, измеренные
MPHI и BVI для различных групп и частот. Если значение любого из этих индикаторов
выходит за пределы допустимых значений разброса меняется его цветокодировка.
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Все показатели качества должны быть проверены согласно принципам и критериям

рассмотренным в предыдущих разделах. Такие показатели как данные напряжения на

датчиках, характеристики шума и Кай, если их значения выходят за допустимые пределы,

отмечаются на диаграмме особыми цветами. Кроме того, очень важно обратить внимание

на разницу в одних и тех же показателях, относящихся к различным группам. Как

правило, их значения должны быть сходными.

На рисунке 9.13 представлен пример визуального воспроизведения качества при каротаже

с двойным временем TW. При проверке кривых на диаграмме не обнаруживается

отклонений в данных напряжения на датчиках, характеристики шума и Кай. Все

показатели для групп А и В, частот 1 и 2 находятся в пределах допустимого диапазона.

Параметры фазовой коррекции, PHCOA, PHCOB, PHERA, PHERB, PHNOA и PHNOB

являются небольшими и стабильными. B1 и B1mod меняются с изменениями значений

прироста. B1mod должен быть сверен с данными поверки в мастерской, причем его

значение не должно превышать 5% пикового значения импульса CPMG, установленного

при поверке. Скорость навивки торса должан составлять 6 футов в минуту. Эта скорость, а

также параметр осредненяи должны быть сверены с графиком скорости в соответствии с

приращением, временем TW и разрешающей способности по вертикали. На дорожке 7

показана разница в T1 между флюидами в пласте-коллекторе, так как ЯМР пористость А

(MPHIA) значительно превышает ЯМР пористость В (MPHIB).

Необработанные данные эхо-сигналов и распределений времени Т2 также могут визуально

воспроиводиться в целях бытсрого просмотра и проверки качества, как показано на

рисунке 9.14. Данные группы записи с двойным временем TW воспроизводятся для одной

и той же скважины и в том же самом интервале, как это показано на рисунке 9.10. Данные

о натяжении кабеля показаны в колонке глубин. Колонки 1 и 2 показывают,

соответественно, суммированные данные по группам А и В. Колонки 3 и 5 содержат серии

эхо-сигналов, соответственно, по группам А и В. Колонки 4 и 6 представляют собой

распределение времени T2 для групп А и В. Колонки 7 и 8 содержат данные по Кай,
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приросту, ЯМР пористости и ИСФ, соответственно, для групп А и В. Серии эхо-сигналов

могут помочь выяснить некоторые проблемы с шумами, как например, высокое Кай.

Проверка качества после выполнения работ 

Данные каротажа MRIL должны быть сопоставлены с материалами остальных методов

ГИС, если таковые имеются в наличии. Существуют два уравнения, имеющих большое

значения для понимания характеристик прибора MRIL и их связи с петрофизическими

параметрами.

]1[ )(
1T

TW

eHIMPHI e
�

���� � (9.7)

CBWMPHIMSIG �� (9.8)

MPHI = эффективная пористость по данным MRIL ;

�e  = эффективная пористость пласта ;

HI = углеводородный индек флюида, находящегося в эффективной

пористости ;

TW = время поляризации примененное при записи ;

T1 =  время продольной релаксации флюида в эффективной

пористости ;

MSIG = общая пористость по данным MRIL полученная при записи

суммарной пористости ;

CBW = вода связанная с глинистой компонентой, померенная

прибором MRIL при TE = 0.6 мсек. и активации частичной

поляризации ;

MPHI может быть отличной от эффективной пористости, если сказывается влияние

углеводородного индекса и длинных компонент времени Т1. Процесс измерения

пористости прибором MRIL-Prime обычно позволяет скомпенсировать её недооценку из-за

эффектов Т1, но на результаты оказывает влияние HI.
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Рисунок 9.13  На этом фрагменте диаграммы качества каротажа записанного с двойным
временем TW, показано изменение параметров напряжения датчиков, характеристики шумов
и Chi. Все индикаторы групп А и В и частот 1 и 2 в пределах нормы, В1 и В1mod меняются с
изменением GAIN. В седьмой колонке пористость MPHIA больше чем MPHIB, что означает
наличие контраста значений Т1 в пластовых флюидах. Качество каротажа может быть
полностью оценено при проверке В1mod и В1 найденном при калибровке, а так-же если
скорость записи проверена по палеткам и измеренному приращению.
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Рисунок 9.14  Данные записи с двойным временем TW собранные на этом фрагменте
получены из того-же интервала, что показан на рисунке 9.10. Такой формат используется
непосредственно на скважине для оперативной предварительной оценки и проверки
качества записи. Данные натяжения кабеля приведены в колонке глубин. В колонках 1 и 2
показаны инкрементные распределения, соответственно, для групп А и В. В колонках 3 и 5
показаны эхо-сигналы групп А и В, а в колонках 4 и 6 - волновые распределения Т2. В
колонках 7 и 8 собраны параметры Chi, GAIN, MPHI  и MBVI, соответственно, для групп А
и В. Некоторые проблемы с шумом, например высокое Chi, могут быть оценены по
изображению собственно эхо-сигналов.
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Отношение MPHI к MSIG на кривых общей пористости

Эффективная пористость (MPHI) всегда меньше суммарной пористости (MSIG), за

исключением очень чистых коллекторов, когда пористость связанная с водой глинистой

компоненты (СBW) равна нулю. Тким образом, MPHI равна MSIG, но, как правило, MPHI

≤ MSIG.

Отношение MPHI TWS  к MPHI TWL на кривых двойного времени TW

Измеряемая при коротком времени поляризации пористость (MPHITWS) обычно бывает

занижена и, таким образом, всегда меньше пористости, измеряемой при более длинном

времени поляризации (MPHITWL). Так происходит даже в тех случаях когда TWL не

является достаточно длинным для полной поляризации. Такая недооценка особенно

типична для продуктивных пластов. Итак, в общем и целом, MPHITWS ≤ MPHITWL.

Отношение MPHI TES  к MPHI TEL на кривых двойного времени TE

Принимая во внимание диффузионный эффект, распределение времени T2 полученное при

длинном времени между эхо-сигналами (ТЕ), сдвигается влево от распределения,

полученного при коротком времени между эхо-сигналами. Так как некоторые компоненты

T2 могли быть получены от самых ранних элементов (бинов) сигнала, то при длинном ТЕ,

эта часть пористости не регистрируется. Следовательно, в общем случае: MPHITES ≤

MPHITEL.

Совпадение между MPHI и пористостью нейтрон-плотностного кросс-плота

В чистых, водоносных коллекторах пористость MPHI должна быть примерно равна XPHI

– пористости полученной на нейтрон-плотностном кросс-плоте. В чистых газоносных

разрезах пористость MPHI полученная при стационарных условиях, должна быть

примерно равна величине нейтронной пористости, рассчитанной для соответствующей

матрицы. В сильно глинистых коллекторах ЯМР пористость должна примерно совпадать с

пористостью плотностного каротажа, рассчитанной для соответствущей матрицы.
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Для анализа характеристик прибора MRIL очень важно иметь представление о типе

бурового раствора. Поскольку прибор обладает небольшой глубиной исследования

регистрация данных происходит в зоне проникновения.

Влияние углеводородного индекса и времени поляризации на MPHI

В результате учета влияния как водородного индекса, так и длинных компонентов

времени T1, пористость MPHI может отличаться от эффективной пористости. В процессе

измерений скважинного прибора серии Прайм, как правило, можно избегать недооценки,

и ввести поправку за влияние эффекта T1. Измерения пока еще зависят от величины

водородного индекса флюидов. В чистых газоносных коллекторах значения пористости

MPHI, полученные в результате стационарных измерений, должны быть приблизительно

равны значениям нейтронной пористости, рассчитанным для соответствующей матрицы.

Ссылки
1. Goelman, G., and Prammer, M.G., 1995, The CMPG pulse sequence in strong

magnetic field gradients with applications to oil-well logging: Journal of Magnetic

Resonance, Series A, v. 113, p. 11-18.
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А

Absorption (absorbed water)
Абсорбция, поглощение. В общем случае: (1) перемещение воды (или любой
другой субстанции) в почве или породе под воздействием всех природных
процессов (таяние, гравитация, атмосферный перенос); (2) поглощение воды
клетками или организмами (корни растений). (3) Абсорбированая вода. Вода
механически удерживаемая в почве или породе и имеющая свойства, сходные со
свойствами обычной (свободной) воды при одинаковой температуре и давлении.
Не путать с термином Adsorption.

Activation
Вызов, активация (активизиция). Запрограммированная последовательность
импульсов, контролирующая в скважинном приборе MRIL процесс поляризации
пластовых флюидов, и отвечающая за измерение их ЯМР-свойств. Активация
может содержать один или несколько CPMG циклов.

Activation, Dual-TE
Активация с двойным временем между эхо-сигналами (TE). Такая активация
позволяет получать два CPMG эхо-сигнала при различных временах (TE), но при
одинаковых временах ре-поляризации (TW). Данные, полученные таким способом,
используются для выделения и типизации углеводородов. В методике типизации
углеводородов используется разница в диффузивности пластовых флюидов.
Поскольку скважинный прибор MRIL генерирует градиентное магнитное поле,
время T2, каждого флюида содержит компоненту, зависящую от его
диффузивности и компоненту, зависящую от времени между эхо-сигналами (TE)
используемого при ЯМР-измерении.

Увеличение времени между эхо-сигналами (TE), сдвинет спектр T2 в сторону
меньших значений времен T2; у различных флюидов этот сдвиг будет отличаться.
Разделение (сдвиг) в распределении T2 соответствует условию диффузивной
релаксации (T2diffusion):

( )
12

2GTWED γ

____________________

Словарь
____________________
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Такая активация может успешно использоваться для выделения и количественной
характеристики нефтей средней вязкости.

Activation, Dual-TW
Активация с двойным временем задержки (TW). Такая активация позволяет
получать два CPMG эхо-сигнала при различных временах задержки (TW), но при
одинаковом времени между эхо-сигналами (TE). Данные, полученные при
активизации с двойным временем задержки, используются для расширения
возможностей выделения газоносных коллекторов или пород с легкой нефтью.
Выделение продуктивных участков основано на том, что T1 в газах и легких нефтях
значительно больше T1, пластовой воды. Поляризация пропорциональна TW:

11 T
TW

ep
−

−∝

Выбирается настолько маленькое значение TW, что ЯМР-сигнал от пластовой воды
поляризуется полностью, а от нефти и/или газа - нет. Затем, выбирается большое
значение TW, с тем, чтобы большая часть сигнала от углеводородов так-же была
поляризована. Из сигнала с длинным временем TW, вычитается первый сигнал - с
коротким TW, оставшиеся в результате эхо-сигналы или T2 распределения
содержат информацию только об углеводородах. Этот метод успешно используется
для количественного определения содержания нефти и газа.

Activation, Standard-T2
Активация с стандартным временем (T2). Активация позволяет получать CPMG
эхо-сигнал при таком TW, что пластовые флюиды полностью поляризованы и TE
при котором могут быть устранены эффекты диффузии на T2. Типичные значения,
при такой активации: TE = 1.2 мсек., 3 сек. < TW < 6 сек., и NE = 300 (число эхо-
сигналов). Активация используется, в основном, для определения эффективной
пористости и проницаемости.

Activation, Total-Porosity
Активация суммарной (общей) пористости. Такая активация позволяет получать
два CPMG эхо-сигнала при различных временах задержки (TW), и при различных
временах между эхо-сигналами (TE). Первый сигнал, записывается при TE = 0.6
мсек., и TW = 20 мсек. (достигается только частичная поляризация), и используется
для количественного определения пор малого размера, которые по крайней мере
большей частью заполнены водой, связанной с глинистой компонентой. Другой
сигнал записывается при TE = 0.9 или 1.2 мсек., и при TW, достаточно длинном,
чтобы обеспечить полную поляризацию всех пластовых флюидов. Этот эхо-сигнал
используется для определения эффективной пористости, суммирование двух
пористостей (эффективной и связанной с глинистой компонентой) дает
представление об общей пористости. Комбинация TE и TW используется для
регистрации «хвостов» или «концов» составляющей эхо-сигнала при стандартной
активизации T2.
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Adsorption (adsorption water)
Адсорбция. (1) Прилипание, притяжение ионов или молекул находящихся в
растворе к поверхности твердой фазы. (2) притяжение газа, жидкости или
растворенного материала на границе раздела с твердой фазой. (3) Адсорбированная
вода. Вода, удерживаемая силами ионного или молекулярного притяжения на
поверхности почвы или минеральных частиц. По своим физико-химическим
свойствам принципиально отличается от свободной/капиллярной воды. Не следует
путать с термином Absorption.

В
В0

Символ, используемый для обозначения внешного статического магнитного поля.
Обозначение постоянного магнитного поля, создаваемого скважинным прибором
NMR; может так-же испрользоваться символ Bz. Символы В0 и Bz применяются
для описания скалярной величины поля.

B1
Символ, используемый для обозначения магнитного поля, созданного контуром,
резонирующим с радио частотой (RF). Осциллирующее магнитное поле, созданное
радиочастотой (RF) резонансного контура. Такое поле генерируется в направлении
перпендикулярном полю В0 и используется для изменения направления
магнетизации на 90° и 180° градусов. Значение B1 обозначает величину
напряженности магнитного поля.

Borehole washout
Каверна (или размыв) ствола скважины. Профиль ствола скважины оказывает
значительное влияние на запись, сделанную прибором MRIL. При приблежении
записывающей части прибора к каверне, наблюдается увеличение параметров
MPHI и MBVI (ЯМР пористость и общее содержание связанных флюидов). Прибор
MRIL воспринимает РВО как связанную воду из-за большого количества
глинистого дисперсного материала и связанной гидратной воды. РНО, в этом
случае, обладает короткими временами релаксации, - результат большого
количества присадок-эмульгаторов, используемых для контроля за водяной
составляющей.

Размыв ствола скважины распознается по:
•  Совместной интепретации ЯМР и кавернометрии/профилеметрии;
•  Сравнительному анализу пористости ЯМР (MPHI) и пористости по кросс-
плоту других методов. Если пористость ЯМР больше пористости на кросс-
плоте, то весьма возможно влияние флюидов в стволе скважины;

•  Наличию аномального значения общего содержания связанных флюидов
(MBVI), которое так-же может быть показателем проникновения флюидов
РВО;
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•  Наблюдаемому увеличению пористости ЯМР, при одновременном
увеличении показаний кавернометрии, и приблизительного равенства
значений общего содержания связанных флюидов и общей ЯМР
пористости;

Bound water (~ combined water)
Химически связанная (конституционная) вода. Вода, входящая в кристаллическую
структуру. Она не может быть удалена без изменения химического состава или
структуры породы. Сюда так-же относится вода, входящая в состав живых клеток.

Bulk Volume Irreducible (BVI)
Суммарный обьем связанной воды или индекс связанной воды (ИСВ). Часть (в
процентах) порового пространства, занятого неподвижной водой которая связана
капиллярными силами. ИСВ рассчитывается суммированием распределения
сигнала T2 до времени граничного значения T2cutoff.

Bulk Volume Irreducible, Cutoff (CBVI)
Граничное значение суммарного обьема связанной воды или индекса связанной
воды (ИСВ). Величина/значение «отсечки».

Bulk Volume Irreducible, Spectral (SBVI)
Спектральный обьем суммарной связанной воды или спектральный индекс
связанной воды (ИСВ), полученный методом MRIL. Этот параметр рассчитывается
по модели, в которой, в каждому спектральному бину связанной воды
приписывается определенный процент пористости. Для рассчетов таким методом
существуют различные модели.

Bulk Volume Moveable (BVM)
Суммарный обьем свободных флюидов или индекс свободного флюида (ИСФ FFI).
Часть (в процентах) порового пространства, занятого подвижными флюидами.
Может быть представлен любой комбинацией воды, нефти и/или газа.

Bulk Volume Water (BVW)
Суммарный обьем воды (общая/суммарная водонасыщенность). Часть (в
процентах) порового пространства, занятого водой.

С

C-series MRIL tool
Прибор MRIL второго поколения (серия С), разработанный и запущенный в
эксплуатацию компанией NUMAR в 1994 г. Может производить различные
измерения одновременно на трех частотах.
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C/TP MRIL tool
Модифицированный прибор MRIL-С, впервые опробован в 1996 г. При
уменьшении значения TE до 0.6 мсек, он позволяет производить измерения общей
(суммарной) и эффективной пористости.

Capillarity
Капиллярность, капиллярное действие, капиллярное натяжение. (1) В общем
случае � свойство трубок, при погружении во флюид вызывать поднятие (или
понижение) уровня жидкости в них, по отношению к уровню флюида в который
они погружены. (2) Взаимодействие между соприкасающимися поверхностями
жидкой и твердой фазы, нарушающей горизонтальную поверхность жидкости. Так-
же применяются термины Capillary Action или Capillary Attraction.

Capillary Bound Water (MBVI или BVI)
Капиллярно-связанная вода - часть воды, которая удерживается в порах или
движется через них благодаря капиллярным силам. Эта часть поровой влаги
остается в порах при пластовых условиях. Иногда так-же называется удержанной
водой или водой капиллярной каймы (~ fringe water, AGI Glossary of Geology, 1987)
однако эти синонимы не распространены и не рекомендованы к употреблению.
Иногда ошибочно заменяется на реликтовую или погребенную воду. В общем
случае связанная вода находится в интервале от 3 мсек. до граничного значения
индекса свободного флюида Т2cutoff. Вода, содержащаяся в капиллярах породы,
может находиться в состоянии капиллярно-разобщенной (вода углов пор или
ограниченная менисковыми поверхностями), либо в состоянии собственно
капиллярной � если поры полностью заполнены водой. В почвоведении иногда
заменяется на suspended water ~ вода, подвешенная в повах и грунте.

Capillary Fringe
Капиллярная кайма � согласно (Meinzer O E, 1942) «Капиллярная кайма, лежащая
непосредственно над зеркалом воды, зона, в которой вода удерживается силой
капиллярности».

Carr-Purcell-Meiboom-Gill Pulse Sequence (CPMG)
Цикл (последовательность) импульсов Карр-Пурселл-Мейбум-Гилл. Первые два
импульса последовательности разделены периодом времени τ , а остальные
импульсы, соответственно периодом τ2 . При измерении сигнала Т2 скважинными
приборами цикл начинается с 90° импульса, за которым следует серия 180°
импульсов. Эхо-сигналы расположены по середине между 180° импульсами, на
временах τ2 , 4τ ,�.; где τ2  = ТЕ, времени между эхо-сигналами. Во время этих
эхо-сигналов регистрируются данные спада. Такая последовательность электро-
магнитных импульсов компенсирует эффекты неоднородности и различия
градиентов магнитного поля при ограниченной диффузии или её отсутствии и
снижает аккумуляционные эффекты от несовершенства 180° импульсов.



ЯМР-каротаж. Принципы и применение
____________________________________________________________________________________________

____________________________________________________________________________________________
313                                                                                                                                                                       Словарь

Clay-Bound Water (CBW)
(1) Вода связанная с глинистой компонентой. Часть (в процентах) порового
пространства, занятого водой, связанной с негативно зараженной поверхностью
глинистых минералов. CBW зависит от величины катионного обмена породы (CEC)
и солености пластовой воды. (2) Неподвижная, структурно связанная вода,
расположенная на поверхности глинистых минералов. Поверхность глин являются
электронно заряженными благодаря замещению ионов в их структуре; эти
поверхности притягивают значительное количество ионно-связанной воды. Эта
вода называется адсорбированной или поверхностно связанной. Глинисто-
связанная вода так-же включает в себя капиллярно сконденсированную воду в
микропорах глинистых агрегатов. Объем воды зависит от удельной поверхности
глины и от плотности поверхностного заряда. По определению, глины сложены из
частиц мелкого размера, и их удельная поверхность очень велика. Связанная вода
влияет на электропроводность песчаников, но не сказывается на их
гидропроводимости. Связанная вода не может быть замещена углеводородами и не
может течь, у нее очень короткие времена Т1 и Т2.

Combinable Magnetic Resonance (CMR/CMR+)
Комбинируемый (комбинационный) прибор магнитного резонанса. Коммерческое
название скважинного прибора расширенного комплекса ГИС, компании
Schumberger.

Condensate (condensation) water
Конденсационная вода, растворенная в газе, находящемся в пласте
(водоконденсат).

Connate water
(1) Реликтова вода. Вода, заключенная в интерстициях осадочных или эффузивных
пород во время их отложения. Т.е. вода, лишенная контакта с атмосферой в
течении долгого геологического времени. Синоним ископаемая вода. (2) Морская
вода, содержащаяся в полостях между пластами осадочных пород и изолированная
благодаря отложению перекрывающих осадков (A Glosssary of Geographical Terms
L.D. Stamp, 1961).

CMRTm Tool*
Комбинационный прибор магнитного резонанса компании Schlumberger,
выпущенный в 1995 г. Прибор работает с прижимным башмаком, и глубиной
исследования около одного дюйма. Такая незначительная глубина исследования
делает прибор весьма чувствительным к проникновению, наличию глинистой
корки и неоднородностям ствола скважины. Приемная антенна CMR длиной 6
дюимов, расположена по середине магнита, длиной 12 дюймов. Такое положение
оставляет 3 дюйма магнита для поляризации протонов перед записью сигнала.
Объем исследования прибора CMR составляет цилиндр около 1 дюйма диаметра и
6 дюймов длиной. Прибор работает в режиме одиночной частоты.
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D
D см. Diffusion Constant

Decay constant
(1) Декремент (коэффициэнт) затухания. (2) Коэффициэнт ослабления.

DIFAN См. Diffusion Analysis.

Differential Spectrum
Разность спектров (разностный спектр). Разница между двумя распределениями
спектра T2, полученная при измерении delta TR. По разности спектров, значительно
проще разделить легкие углеводороды от тяжелых нефтей и воды. См. DSM-
logging.

Diffusion
Диффузия. Процесс при котором молекулы и другие частицы перемешиваются и
мигрируют в результате их случайного теплового движения. Диффузия молекул во
время CPMG или другой последовательности спин-эхо импульсов, вызывает
затухание и спад значения T2. Если во время последовательности импульсов,
используется магнитное поле с известным градиентом, это затухание можно
оценить количественно и таким образом, определить коэффициэнт диффузии
флюида.

Diffusion Analysis (DIFAN)
Диффузионный анализ. Методика интерпретации, базирующаяся на двойном
измерении времени ТЕ. DIFAN использует различие диффузионных констант воды
и нефтей средней вязкости и применяется для выделения и количественной оценки
продуктивных коллекторов. Данные для интерпретации DIFAN записываются при
двойном измерении времени ТЕ и одиночном, длинном времени поляризации.

Diffusion constant
Коэффициэнт диффузии (диффузионная константа).

По определению � среднеквадратичное смещение молекул, наблюдаемое в период
времени t. Коэффициэнты диффузии меняются при изменении типа флюида и
температуры. В газах D так-же зависит от плотности, и таким образом связано с
давлением.

Diffusion Limit, Fast
Ограничение быстрой диффузии. В случае, когда протоны ядер в поре породы,
переносятся с помощью диффузии и взаимодействуют (релаксируют) с
поверхностью породы со скоростями релаксации флюида ограниченными
релаксационными свойствами поверхности поры, а не скоростью перемещения

t
x

D
6

2

=



ЯМР-каротаж. Принципы и применение
____________________________________________________________________________________________

____________________________________________________________________________________________
315                                                                                                                                                                       Словарь

протонов, процесс диффузии на поверхности поры происходит значительно
быстрее, чем в поре. Магнетизация в поре остается однородной, и для описания
процесса поляризации или ее спада, достаточно одного значения Т1 или Т2. Это
предположение является основой для пересчета регистрируемых сигналов Т1 или
Т2 в распределение пористости по размеру пор.

Diffusion Limit, Slow
Ограничение медленной диффузии происходит в случае, когда протоны
переносятся по поре диффузией и релаксируют на поверхности со скоростью
ограниченной не релаксивностью поверхности, а скоростью, с которой они могут
ее достигнуть. Такая диффузия не приводит к образованию однородной
магнетизации в поровом пространстве. Соответственно для корректного описания
процесса спада намагниченности в поре требуется не одна, а несколько
экспоненциальных зависимостей. См. так-же Slow Diffusion Limit.

Diffusion Relaxation
Диффузионная релаксация. Механизм релаксации вызванной молекулярной
диффузией в градиентном поле, во время измерений CPMG. Молекулярная
диффузия во время цикла CPMG или другой последовательности импульсов,
вызывает затухание кажущегося значения Т2. Это затухание может быть
количественно померяно и соотнесено с диффузивностью флюида, при условии,
что известен градиент магнитного поля которое было приложено во время
последовательности импульсов. Диффузия влияет только на измерения Т2 и не
влияет на значения Т1.

Diffusion, Restricted
Ограниченная диффузия. Эффект геометрии (ограничения пространства) стенок
пор, на диффузионное перемещение молекул. Измерения диффузии ЯМР,
позволяют рассчитать диффузионную постоянную по данным затухания сигнала,
вызванного молекулярным движением в течении очень точного интервала. Если
временной интервал (TE для последовательности CPMG) достаточно большой,
молекулы будут сталкиваться со стенками поры (или другим препятствием) и
будут �ограниченны�. При этом кажущаяся постоянная диффузии будет
уменьшаться.

DMR сокращенное от: Density Magnetic Resonance
Метод плотностно-магнитного резонанса. Совместная интерпретация данных ЯМР
и плотностного метода, при которой для выделения газоносного коллектора
используют разность кривых общей пористости. Аналогичным образом может
использоваться сравнение ЯМР с акустическим методом, такой подход иногда
называют акустическим магнитным резонансом (AMR или SMR).

DSM сокращенное от: Differential Spectrum Method.
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DSM logging (differential spectrum)
Метод разницы спектров (МРС). Последовательная запись двух эхо-сигналов
CPMG с различными временами задержки (TW) и одинаковым ТЕ. Изменения во
времени задержки приводят к изменению во времени повтора TR (или TX), отсюда
идет название delta TR. Такой подход используется при записи ЯМР для
улучшенного выделения коллекторов с газом или легкой нефтью. Он основан на
том, что значения T1 газа или легких нефтей, в пористой среде, значительно
длиннее, чем значения T1 пластовой воды. Сначала выбирается такое минимальное
значение TW, чтобы полностью улавливался сигнал от пластовой воды, а сигнал от
газа и/или нефти � нет. Второе, более длинное, значение TW выбирается таким,
чтобы так-же уловить и большую часть сигнала от углеводородов. При
последующем вычитании результирующих спектров распределения T2 получают
разницу, содержащую информацию только от углеводородов. Этот разность
спектров может использоваться для количественной оценки газонасыщенности, и,
если известно время T1 в нефти, для оценки нефтенасыщенности.

E

Echo Spacing (TE)
Интервал между эхо-сигналами (ТЕ). В последовательности CPMG, это время
между 180-градусными импульсами. Этот интервал совпадает, со временем между
двумя соседними эхо-сигналами.

EDM сокращение от: Enhanced Diffusion Method.

Effective porosity
Эффективная пористость. Предполагается такой-же как и MPHE, полученной при
TE = 1.2 мсек. Разница между общей пористостью и MPHE, равна пористости
воды, связанной с глинистой компонентой.

Enhanced Diffusion Method (EDM)
Метод усиленной диффузии. Подход к интерпретации ЯМР, основанный на
разности диффузии в различных флюидах. Усиление эффекта диффузии во время
записи эхо-сигналов, позволяет разделять свободную воду и нефть по
распределению Т2, полученному при выбранном длинном времени ТЕ. Для
распознавания нефтей средней вязкости EDM использует последовательность
CPMG, записанную со стандартной регистрацией Т2, и с длинными временем ТЕ.
Для количественной характеристики флюидов методом EDM необходимо записать
данные при двойном времени задержки TW с длинным времени ТЕ или данные при
двойном времени ТЕ, записанные при длинном TW.

WCBTOTALeffMPHE φφφ −=≡
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ERM (Enchanced Ratio Method)
Метод усиления соотношения эхо-сигналов. Первая запись выполняется с длинным
временем TW и коротким TE, т.е. регистрируется длинное время T2 - сигнал от
газа. Вторая запись с длинным временем TW регистрируется сигнал от газа,
длинное TE приводит к короткому T2 в газе. После этого спад Т2 первой записи
делится на Т2 от второй (делятся эхо-сигналы) полученный результат - кривая
соотношения эхо-сигналов. Первые моменты (вступления) соотношения
используются для вычисления диффузии газа. Преимущества метода: прямое
определение газа, устойчивость к помехам; недостатки - требуется большое
значение HI. По данным: Flaum C., et al. �Identification of Gas with the Combinable
Magnetic Resonance Tool (CMR)�, 1996 SPWLA Symposium.

F

Fast diffusion limit
Лимит быстрой диффузии. Это предположение лежит в основании преобразования
распределения времен T1 и T2 в распределения пор по размерам. Суть этого
сложного процесса сводиться к переносу протонов, силами диффузии внутри поры
к поверхностному слою, где они релаксируют. Условием обоснованности лимита
быстрой диффузии, служит:

где a характеристический размер поры, ρρρρ поверхностная релаксация, и D
диффузионная константа флюида. Когда процесс диффузии проходит быстрее, чем
характеристическое время релаксации флюида в поре, магнетизация в поре
остается равномерной и единственное значение времени T1 или T2 может быть
использовано для описания спада магнетизации в индивидуальной поре.

FFI см. Free Fluid Index.

FID см. Free Induction Decay.

Fossil water
Ископаемая или реликтова (сингенетическая) вода; редко употребимое:
талассогенная вода, т.е. задержанная в осадках во время их отложения. (A
Glosssary of Geographical Terms L.D. Stamp, 1961).

Free Fluid Index (FFI)
Индекс свободного флюида (ИСФ). Описывает часть порового пространства,
занятого флюидами, которые могут свободно перемещаться. Необходимо
различать часть флюидов, которые могут быть смещены капиллярными силами, и
частью флюидов, которые могут быть добыты из коллектора, при данном

1<<D
aρ
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насыщении. При интерпретации MRIL, ИСФ рассчитывается как суммирование
сигнала от распределения Т2 от значения времени больших (или равных)
граничному значению Т2cutoff.

Free Induction Decay (FID)
Спад свободной индукции. Промежуточный сигнал ЯМР от возбужденных с
Ларморовской частотой ядер, обычно получаемый после единичного
радиочастотного импульса. Характеристичная постоянная времени для спада
свободной индукции, обозначается Т2*. Эта величина всегда значительно меньше
чем время Т2.

G

G
Обозначение силы градиента магнитного поля, которое меряется при ЯМР.

Gain
Прирост, приращение. Применяется по отношению к относительному потенциалу,
приобретенному прибором, в котором учитывается вклад антенны и электроники.
Поскольку вклад электроники практически постоянный, приращение, в основном,
зависит от нагрузки на антенну Q. В начале каждой последовательности
импульсов, измеренный на низком уровне сигнал, посылается от приемной
антенны (явление известно как В1-цикл) к главной антенне, полученный при этом
сигнал обрабатывается как эхо-спад. Полученный результат измеряется и
сравнивается с начальным выходным импульсом; разница и составляет
приращение. Такой процесс применяется для компенсации за потери при нагрузке
Q, которая зависит от флуктуаций системы и неоднородностей ствола скважины.

Gauss
Гаусс. Единица измерения магнитного поля; 10,000 Гаусс равны 1 Тесле.
Магнитное поле Земли составляет примерно 0.5 Гаусс.

Gradient field
Градиентное поле. Магнитное поле, сила которого меняется, в зависимости от
положения объема измерения. Прибор MRIL использует градиентное поле в
радиальном направлении. При небольших объемах исследования, градиент поля,
можно считать линейным; как правило он измеряется в Гаусс/см. или Гц/мм.

Gravitational water
Гравитациооная вода; - т.е. влага перемещающаяся в порах под действием силы
тяжести, редко употребимое.



ЯМР-каротаж. Принципы и применение
____________________________________________________________________________________________

____________________________________________________________________________________________
319                                                                                                                                                                       Словарь

Gyrornagnetic (magnetogyric) Ratio (γγγγ)
Гиромагнитное отношение (степень гиромагнитности), в общем случае
обозначается символом γγγγ. Сила ядерного магнетизма для данного типа ядер.
Определяется как отношение магнитного момента к угловому моменту частицы.
Является мерой силы ядерного магнетизма. Для каждого типа ядер, это постоянная
величина. Для протона γγγγ = 42.58 MHz/Tesla.

H,I

Hydrogen index
Углеводородный индекс (HI). Получается при делении протонной плотности
жидкой фазы в поровом пространстве на протонную плотность чистой воды при
стандартных значениях температуры и давления. Этот индекс изначально
использовался для интерпретации компенсационного нейтронного каротажа и был
весьма нечетко определен.

Immobile water
Неподвижная или несмещаемая вода. В общем � термин свободного употребления,
которого, по возможности, следует избегать при описании ЯМР.

Interstitial water
Поровая вода. Подземная вода в поровом пространстве пород, синоним свободной
пластовой воды входящей в состав индекса свобоного флюида (ИСФ-MFFI),
иногда так-же называется диффузной.

Inversion recovery
Инверсионное восстановление. Последовательность импульсов, применяемая при
измерении времени релаксации T1. Последовательность: «180º - ti - 90º - запись �
TW», где i = 1�.N. Первый 180º импульс разворачивает магнитные моменты ядер
по отношению к полю В0. После заданного времени задержки TW (времени
инверсии - ti), 90º -импульс разворачивает спины в поперечной плоскости и
измеряется степень восстановления начальной магнитизации. После времени
задержки TW, поляризация полностью восстанавливается и цикл повторяется. Для
получения достоверных данных о времени Т1, этот цикл должен повторяться
несколько раз с различными ti , и следовательно требует значительное время.

Irreducible Water (BVI)
Остаточная вода. Возможная трактовка � приблизительно сумма пленочной и
капиллярно- связанной воды. В некоторых работах заменяется на термин residual
water.
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L

Larmor Equation
Уравнение Лармора. Уравнение, согласно которому, частота прецесси ядерного
магнитного момента в магнитном поле прямопропорциональна напряженности
магнитного поля и гиромагнитному отношению.

πγ 2/0Bf =
где:

 0B  величина статичного магнитного поля

 γ  уровень гиромагнитности

Larmor Frequency
Ларморовская частота. Частота с которой спин ядра прецессирует вокруг
постоянного поля, или частота при которой возможен ЯМР. Эта частота
определяется уравнением Лармора.

Lattice
Решетка/кристаллическая решетка. Термин заимствован из физики твердого тела и
описывает степени свободы (или местные условия) в пределах которых спины ядер
могут обменивать энергию. Обмен энергией приводит к тому, что магнетизация
релаксирует до величины термального равновесия посредством спин-решеточной
релаксации T1.

Line-broadening
Расширение линии. «Смазывание» или расширение спектра времени Т2 за счет
помех.

M
M  см. Magnetization.

Вектор намагниченности.

M0
Равновесное значение вектора намагниченности, направленное вдоль постоянного
магнитного поля.

MAD (measurement-after-drilling).
Измерение ЯМР в режиме «запись после бурения». Осуществляется прибором
MRWD (Magnetic Resonance While Drilling tool), при этом регистрируется сигнал,
близкий по качеству к сигналу от стандартного прибора типа Прайм, на кабеле.
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Magnetic resonance (MR)
Магнитный резонанс. Метод описывает более обширную группу явлений, чем
ЯМР. Включает ядерный четырехкратный резонанс (NQR) и парамагнитный
резонанс электронов (EPR). Термин применяется чтобы избегать противоречий,
поскольку распространено ошибочное представление, что если употребляется
термин ядерный, обязятельно присутствует и радиоактивность.

Magnetic Resonance Imaging (MRI)
Метод визуализации магнитного резонанса. Томография. Термин относится к
визуализации структуры человеческой ткани при помощи ЯМР. Приборы MRI
используют градиентные поля, позволяющие локализировать измерения в
пространстве. MRI- методику так-же можно использовать при исследовании керна
и (остаточного) насыщения керна.

Magnetic resonance image logging (MRIL)
Каротаж визуализации магнитного резонанса. Новый подход к методике ЯМР,
разработанный и запатентованный компанией NUMAR Corporation. Скважинный
прибор MRIL использует поле с постоянным градиентом и перпендикулярным
магнитным полем RF, позволяющим проводить измерения ЯМР в отдельных
объемах концентрической формы.

Magnetic susceptibility, χχχχ
Магнитная восприимчивость. Константа описывающая пропорциональность между
внешним магнитным полем наведенной намагниченностью. Разница в магнитной
восприимчивости поровых флюидов и матрицы породы приводит к градиентам
внутреннего поля.

Magnetization, Longitudinal (M.)
Продольная намагниченность (М). Часть вектора начальной намагниченности,
параллельная постоянному магнитному полю (В0 или Вz).

Magnetic Moment
Магнитный момент. Мера магнитных свойств объекта или частицы (протона),
которые заставляют объект или частицу располагаться параллельно магнитному
полю.

Magnetization, Nuclear
Ядерная намагниченность. Макро вектор количественно равный спрямленному
ядерному магнитному моменту в постоянном магнитном поле. Вектор
проецируется в плоскость перпендикулярную статическому полю и известен под
названием поперечной намагниченности, эта та величина, которая наблюдается при
ЯМР.

MAP/MAPII
Название пакета программ, разработанного компанией NUMAR для инверсии
данных спада эхо-сигнала в распределение Т2 и рассчета MPHI, BVI и BVM, на
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основе граничного значения времени T2. Алгоритм инверсии применяемый в ней
основан на разложении по особым значениям - сингулярное разложение (SVD).

MBVI1 � тоже, что и BVI

MBVM - тоже, что и BVM

MCBW
Глинисто-связанная вода. Рассчет значений CBW, полученных суммированием
распределения Т2, при частично поляризованных CPMG эхо-сигналах, с TE =
0.6мсек. и TW = 20мсек. см. Water, Caly-bound water.

MPERM
Проницаемость, рассчитанная по данным ЯМР эхо-сигналов. В настоящее время
используется много различных формул, некоторые из них - модификации
зависимости Kozeny-Carman. Два, наиболее часто употребляемых подхода
основаны на

(1) уравнении Coates:

и (2) формуле геометрического среднего:

MPHE
Эффективная ЯМР пористость. Параметр рассчитанный в результате интеграции
части суммарной пористости, начиная приблизительно с 4 мсек. и до более динных
значений времени Т2. Пористость, полученная из T2 MRIL (при TE = 1.2 мсек)
называется MPHE, та же пористость, полученная приборами MRIL серии В и С,
называется MPHI.

MPHI
ЯМР пористость, по данным каротажа или анализа керна, в первом приближении
представляет не зависящую от минералогии, эффективную пористость породы,
заполненную жидкой фазой. Отметим, что действительное значение пористости
может зависить от минимального времени между эхо-сигналами. См. так-же MPHE
и MPHS.

MPHS
Общая пористость, полученная прибором MRIL-C/TP. Рассчитывается как сумма
частичных пористостей для всех ячеек T2 (более 0.5 мсек). Этот параметр нельзя
получать приборами MRIL серии В, и первыми выпусками серии С.

                                                          
1 M � stands for magnetic
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MR см. Magnetic Resonance.

MRI см. Magnetic Resonance Imaging.

MRIAN см. MRIL Analysis.

MRIL см. Magnetic Resonance Imaging Logging.

MRIL Analysis (MRIAN)
Анализ визуализации магнитного резонанса. Методика интерпретации, в которой
совместно обрабатываются даные метода сопротивлений (глубокого), стандартные
измерения Т2 методом визуализации ЯМР, и модели двойной воды. MRIAN
позволяет рассчитать пористость, заполненную пластовой водой в неизмененной
зоне. Затем полученные данные сравниваются с результатами анализа только
данных ЯМР, например TDA, EDM, или DIFAN.

MRIL В0 Radial Dependence
Радиальная зависимость В0 в методе MRIL. Постоянное магнитное поле В0 в
приборе MRIL является градиентным полем, напряженность которого В0
уменьшается по мере удаления от оси прибора. Радиальная зависимость
описывается как В0 ~r�2, где r � расстояние от оси прибора.

MRIL В0 Temperature Dependence
Температурная зависимость В0 в методе MRIL. Постоянное магнитное поле В0 в
приборе MRIL создается постоянным магнитом. Температурная зависимость
напряженности В0 связана с тем, что намагниченность магнита зависит от
температуры. Средняя аппроксимация напряженности поля, для типичных
скважинных условий, описывается как Т�1 зависимость, где Т � абсолютная
температура.

MRIL B1 Temperature Correction
Температурная поправка B1 в методе MRIL. Импульс B1 90° определяется при
наземной калибровке прибора MRIL, в комнатной температуре. Энергия
необходимая для 90-градусного поворота ядер в скважине, будет отличаться от
энергии импульса из-за различий в температурах, соответственно возникает
необходимость ввода поправки за температуру.

MRIL-C Tool
Прибор MRIL серии С. Второе поколение приборов, выпущенных компанией
NUMAR в 1994 году. Этот прибор позволяет проводить одновременно
многочисленные измерения. MRIL-C работает в режиме двойной частоты, а MRIL-
C+ в режиме тройной частоты. Прибор MRIL-C/TP, выпущенный компанией
NUMAR в 1996 году, использует уменьшенное значение ТE (0.6 мсек.), и
обеспечивает одновременное изменение общей и эффективной пористости. В
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дополнение, поскольку в приборе уменьшена реверберация, первые эхо-сигналы
так-же содержат полезную информацию.

Поскольку прибор MRIL-C работает либо в двух-частотном либо в трех-частотном
режиме, измерения на различных частотах могут проводиться один за другим
значительно быстрее. Каждая частота возбуждает сигнал с различной глубины, и
соответственно отпадает необходимость ждать спада наведенной поляризации
перед следующим измерением в другой точке. Изменения в частотах позволяет
проводить больше измерений, в заданный отрезок времени и таким образом
увеличить скорость записи, без уменьшения соотношения сигнал/шум, или
увеличить это соотношение без замедления скорости записи.

MRIL Depth of Investigation (DOI)
Глубина исследования (ГИ). Поскольку Ларморовская частота зависит от В0, а В0
зависит от расстояния до центра прибора, частота так-же зависит от расстояния, и
соответственно определяет глубину исследования прибора MRIL. Кроме того, В0
зависит от температуры, соответственно, если используется одна частота В1,
Ларморовская частота и глубина исследования зависят от температуры. При
увеличении температуры, напряженность В0 спадает; соответственно уменьшается
и глубина исследования. Так для прибора МRIL глубина исследования
составляющая около 16 дюймов при температуре около 25 °С, уменьшается до 14
дюймов при повышении температуры до 125 °С. Детали и рекомендации по этому
набору проблем рассматриваются в различных публикациях.

MRIL-Prime Tool
Прибор серии Прайм. Последнее семейство приборов МRIL, выпущенных
компанией NUMAR. Скважинные приборы этой серии могут выполнять измерения
в скважине, одновременно на девяти различных частотах. При переключении с
одной частоты на другую измерения могут производиться значительно быстрее.
Приборы MRIL этой серии позволяют произвести измерения связанной воды (и
капиллярной), эффективной пористости, и определить тип углеводородов за одну
СПО. Помимо значительного сокращения времени, исчезает необходимось
коррекции глубин.

У прибора MRIL�прайм, есть два дополнительных пре-поляризационных магнита,
расположенных над- и под приемной антенной. Такая конструкция позволяет
достигать полную поляризацию пластовых флюидов, и получать Т2 сигнал в
меньшей степени зависящий от условий измерения. Приборы этой серии могут
записывать всю информацию, необходимую для выделения в разрезе
продуктивных коллекторов и определения их параметров � типа, количества
(насыщенности) углеводородов и рассчета проницаемости. На практике, этот
прибор может практически полностью заменить стандартный комплекс ГИС в
открытом стволе.

MRIL Sensitive-Volume Thickness
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Чувствительный объем. Мощность зоны, из которой прибор получает
информацию. Мощность отдельного �информационного слоя� составляет около 1
мм. и зависит от градиента поля В0 и частоты слоя.

MRWD (Magnetic Resonance While Drilling tool)
Прибор записи ЯМР во время бурения. Экспериментальный прибор,
регистрирующий спектральный ЯМР непосредственно во время бурения
разработки Numar и Sperry-Sun. Опробован в Мексиканском заливе в 1999 г.
Прибор может применяться с долотами диаметром 8½ и 10 5/8 дюймов, и работает в
двух режимах � собственно MRWD и MAD (см. measurement-after-drilling).

MSIG
Измерение пористости, полученное комбинированием данных записанных при
двойном времени ТЕ, равным 0.6 и 1.2 мсек. Пористость, полученная таким
образом, должна хорошо совпадать с измерениями на керне.

MSIG = MCBW + MPHI.

Mud doping
Присадки/глинистые присадки. Сравнительно редко применяемое на практике
добавление магнетита  в буровой раствор. Для первых, уже устаревших, приборов
типа NML, было необходимо заглушить фоновый сигнал ствола скважины. Однако,
в настоящее время, в некоторых случаях, по-прежнему желательно добавлять в
буровой раствор ионы с парамагнитными свойствами, чтобы изменить ЯМР
свойства фильтратов раствора.

N
Nuclear magnetic logging (NML)

Ядерно-магнитный каротаж. Результат изысканий использования ЯМР для
каротажа, проведенных в 50-х и 60-х гг. компанией Chevron. Исследования
завершились созданием прибора NML, который измерял прецессию потонов
водорода, вызванную магнитным полем Земли. Для прибора, требовалось
использование специальных присадок, которые сводили на нет сигнал от ядер
водорода в стволе скважины.

Nuclear Magnetic Resonance (NMR)
Ядерно-магнитный резонанс (ЯМР). Метод наблюдения за статическими и
динамическими параметрами ядерного магнетизма. Для этого метода необходимо
статическое магнитное поле, чтобы переориентировать магнитные моменты
спинов, и поперечное осциллирующее поле (на частотах радио-диапазона RF),
чтобы возбуждать магнитные моменты ядер. Частота осциллирующего поля
должна удовлетворять условию резонанса с Ларморовской частотой:

ЯМР может использоваться для характеристики молекулярной структуры и для
зондирования взаимодействия молекул. ЯМР является основной методикой
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химической спектроскопии, с весьма широкими возможностями, включая
исследование свойств жидкостей в пористой среде.

P
PAP см. Phase Alternate Pairs.

Paramagnetic Material
Парамагнитный материал (парамагнетик). К этому классу относятся материалы со
слабой, но положительной магнитной восприимчивостью. Даже незначительное
количество такого материала, может существенно уменьшать времена релаксации в
породе. К таким веществам относятся марганец, ванадий, большинство
редкоземельных минералов и кислород. В некоторых случаях специальные смеси
(эмульсии) используются в скважинах для выделения коллекторов. Сульфат меди
(CuSO4) применяется при метрологии приборов и позволяет значительно сократить
время калибровки.

Phase Alternate Pairs (PAP)
Метод противофазных пар. Методика записи двух эхо-сигналов, смещенных по
фазе на 180 градусов. Смещение эхо-сигнала достигается за счет сдвига по фазе
начальной последовательности импульсов CPMG с 90-градусов на 180-градусов.
Это приводит к изменению полярности эхо-сигнала на противоположную. В
процессе обработки один сигнал, вычитается из другого, чтобы внести поправки за
реверберацию и смещение нулевой линии.

Polarization Time (TW)
Время поляризации, см. Wait Time.

Pore-Size Distribution (From T2 Distribution)
Распределение пор по размерам по данным времени релаксации Т2. Порода-
коллектор обычно состоит из пор различного размера. Если принебречь эффектом
обмена флюидов между порами, процесс релаксации порового флюида можно
описать как сумму релаксаций в отдельных порах разного размера. Распределение
записываемого сигнала релаксации является результатом наложения
распределений от отдельных пор. При ограничении быстрой диффузии, время Т2
флюида определяется как:

BTV
S

T 2
2

2

11 += ρ

где Т2В � скорость объемной релаксации, для небольших пор,
типичных в песчаных коллекторах:

V
S

T B
2

2

1 ρ<<  и может не учитываться.
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Если в поровом пространстве присутствуют два или более флюида, то в результате
капиллярного давления, несмачивающие фазы, будут занимать крупные поры, в то
время как смачивающие � мелкие. Кроме того, времена релаксации
несмачивающих жидкостей меньше, чем у смачивающих, поскольку величина их
Т2 не включает поверхностную составляющую. Капиллярные и поверхностные
эффекты приводят к укорачиванию Т2 у смачивающих флюидов, по сравнению с
теми-же флюидами в объеме. Значительно меньшая разница наблюдается у времен
Т2 несмачивающих флюидов. Следовательно, различные типы жидкостей могут
быть выделены при анализе распределения Т2 или при использовании методик
двойных времен TW или TE.

См. так-же Т2 in porous media.

Porosity, Effective
Эффективная пористость. Как правило определяется как суммарный объем пор,
занятый подвижными флюидами, за исключением изолированных пор, и части
порового пространства, занятого молекулами адсорбированной воды. Эффективная
пористость включает поровые флюиды, которые могут быть неподвижными, в
данных условиях водонасыщенности и капиллярного давления. Для глинистых
песчаников, эффективной пористостью, является весь объем, занятый флюидами,
за вычетом объема, занятого глинисто связанной водой, и с углеводородным
индексом равным 1.

Porosity, Total
Суммарная (общая) пористость. Весь объем порового пространства, занятого
флюидами. При измерении прибором MRIL, общая пористость определяется как:

MPHI � Эффективная пористость, измеренная приборами серии С. Количество
воды, связанной с глинистой компонентой CBW может быть определен по нейтрон-
плотностному кросс-плоту пористости и MPHI. Когда используется прибор MRIL-
C/TP, то непосредственное измерение параметра PORCBW обеспечивается эхо-
сигналом с TE 0.6 мсек.

Precession
Прецессия. Круговое движение оси магнитного момента протона вокруг оси поля
В0, происходящее при Ларморовой частоте (Larmor frequency).

Proton density
Протонная плотность. Концентрация подвижных атомов водорода в единице
обьема. Результаты ЯМР могут быть скорректированы за изменения в протонной
плотности, если разделить кажущуюся ЯМР пористость на соответствующий
водородный индекс.

Pulse, Hard
Жесткий импульс. Термин применяется для описания мощного кратковременного
RF-импульса, применяемого в последовательности ЯМР. В противоположность

.MPHICBWeffCBWtotal +=+= φφφφ
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�мягким� импульсам, которые, как правило низкоэнергетичные и
продолжительные. Поскольку длительность �жестких� импульсов более короткая,
они чаще находят применение для последовательностей, которым необходимы
короткие времена между эхо-сигналами ТЕ. См.так-же Pulse Shaping.

Pulse, Soft
Мягкий импульс. Длинные импульсы, применяемые при ЯМР измерениях. Во
временном распределении, импульсы имеют колоколообразную форму, со
«срезанным» верхом.

Pulsed nuclear magnetic tool (PNMT)
Пульсационный прибор ЯМР. Экспериментальный прибор с прижимным
башмаком, разработанный компанией Schlumberger. Используя однородное
магнитное поле, прибор исключал влияние ствола скважины, за счет плотного
контакта с породой. Этот прибор был полностью вытеснен последовавшим CMR -
комбинируемый прибором магнитного резонанса.

Pulse Shaping
Формирование импульсов. При измерении ЯМР, амплитуда, форма и ширина RF
импульсов определяет избирательность по частоте (см. так-же Pulse hard & soft).
Мягкие импульсы формируются таким образом, чтобы улучшить их частотную
избирательность и некоторые другие параметры. Жесткие импульсы имеют
прямоугольную форму и содержат целый набор частот, отличных от основной, их
частотная избирательность очень низкая. Мягкие импульсы занимают более
широкое поле в пространстве временного домена, но имеют сравнительно узкий,
однородный частотный спектр, и следовательно, обладают хорошей
избирательностью.

Pulse, 90°°°°
Девяностоградусный импульс. Импульс радиочастоты, который генерируется для
�разворота� вектора собственной намагниченности на девяносто градусов от его
начального положения, по отношению к вращающейся системе координат. Если
спины изначально расположены параллельно статическому магнитному полю,
такой импульс создает поперечную магнетизацию и спад свободной индукции.

Pulse, 180°
Стовосемьдесятиградусный импульс. Импульс радиочастоты, который
генерируется для �разворота� вектора собственной намагниченности на 180
градусов от его начального положения, по отношению к вращающейся системе
координат. В идеальном случае, амплитуда 180-го импульса умноженная на его
продолжительность вдвое превосходит амплитуду 90-градусного импульса
помноженного на его продолжительность. Каждый из 180-градусных импульсов в
цикле CPMG, создает эхо-сигнал.
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R

Radio frequency (RF)
Радио частота. Электро-магнитное излучение с частотой в радио диапазоне. В
лабораторных спектрометрах Ларморовская частота (Larmor frequency) для
водорода, как правило, находится в этом-же диапазоне.

Regularization
Регуляризация. Процесс, используемый для стабилизации при инверсии
измеренного спада ЯМР-сигнала в спектр распределения Т2. Применяется
несколько разнообразных методов, МАР � один из них. Все методы приводят к
более плавному спектру. Необходимость в регуляризации означает, что не
существует уникального спектра ЯМР или распределения пор. В большинстве
случаев основные черты спектра не зависят от используемого метода
регуляризации.

Relaxation Time
Время релаксации (спада). Постоянная времени, связанная с возвращеним спинов
ядер в их начальное состояние после возбуждения. В измерениях ЯМР существуют
несколько времен релаксации; наиболее часто измеряемые � Т1 и Т2. В свободной
воде Т1 и Т2 около 3 секунд, значения для пластовой воды в поровом пространстве
как правило, менее 300 мсек.

Relaxation Time, Bulk Fluid
Объемное время релаксации. Это время описывает взаимодействие флюида самого-
с-собой. В большинстве случаев Т1 и Т2 одинаковы. Однако в газах, из-за их
диффузивности, кажущееся Т2, померенное методикой CPMG, в градиентном поле,
может быть значительно меньше, чем Т1.

Relaxation Time, Longitudinal (T1)
Время продольной релаксации (Т1). Продольная или спин-решеточная релаксация.
Это время характеризует скорость переориентировки спинов помещенных во
внешнее магнитное поле.

Restricted diffusion
Ограниченная (принудительная) диффузия. Описывает эффект геометрического
ограничения порового пространства на диффузионное перемещение молекул.
Измерения ЯМР диффузии определяют диффузионную константу по затуханию
вызванному движением молекул в четко ограниченном интервале набдюдения.
Если временной интервал (TE в цикле CPMG), будет достаточно большим, то
молекулы будут сталкиваться со стенками поры и с другими препятствиями, и при
этом становиться ограниченными. Кажущаяся диффузионная константа в этом
случае будет уменьшаться.



Halliburton Energy Services
_____________________________________________________________________________________________

_____________________________________________________________________________________________
Словарь                                                                                                                                                                                                                    330

Residual Oil
Остаточная нефть (нефтенасыщенность). Часть нефти, оставшейся в породе-
коллекторе, после промыва фильтратом БР или проникновения вод заводнения,
либо после какого-то другого метода добычи.

Ringing
Наведенный или вызванный сигнал (реверберация). Характеризует осциляционную
реакцию магнита на использование высоко-энергетических RF импульсов.
Магниты в приборе MRIL ведут себя подобно пьезоэлектрическому кристаллу.
Когда RF антенна, под воздействием высоко-энергетичного RF импульса, приходит
в возбужденное состояние, магнит резонирует или отзывается. Благодаря своим
пьезоэлектрическим свойствам, магнит генерирует осцилляционный потенциал,
который смешивается с сигналом от породы. У каждого магнита есть особое
«окно» (шириной обычно 20-40 кГц), в котором эффект минимален. Идеальная
операционная частота магнита, расположена посередине этого «окна».

Rotating frame of reference
Вращающаяся рамка. Имеется ввиду подвижная система отсчета координат,
установленная на вращающемся скважинном приборе, по сравнению со
стационарной системой координат. В методе ЯМР рамка подвижной системы
отсчета вращается с Ларморовской частотой. Уравнения, описывающие изменения
магнетизации в такой системе принимают более простую форму. Влияние
постоянного магнитного поля компенсируется, при этом становится значительно
легче представить и рассчитать ЯМР свойства.

Running Average (RA)
Скользящее среднее, параметр осреднения. Представляет собой суммарное число
отдельных экспериментов (полных эхо-сигналов), необходимых для обеспечения
высокого уровня сигнал/шум. Поскольку в последовательности CPMG, применяют
технологию PAP, скользящее среднее равняется как минимум двум.

S

SBVI см. Spectral Bulk Volume Irreducible.

Sensitive volume, MRIL tool
Чувствительный объем (объем исследования). Это объем породы, которая дает
сигнал ЯМР. У скважинного прибора MRIL постоянный градиент магнитного поля
и чувствительный объем в форме цилиндра с диаметром исследования (DOI).
Толщина цилиндра исследования определяется величиной градиента и B1, и
составляет несколько миллиметров. В стандартных условиях записи объем
исследования около одного 800 см3.
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Shifted spectrum
Сдвинутый (смещенный) спектр. Относится к наблюдаемому сдвигу спектра
распределения сигнала, связанному с маленькими значениями T2 происходящими
при увеличении TE (см. ∆TE logging). Этот сдвиг наиболее заметен, в легких
углеводородах. У газов диффузивность значительно выше, чем у нефтей или воды;
газы так-же более чувствительны к изменениям во времени между эхо-сигналами
(TE). Тяжелые нефти обладают пониженной диффузивностью и менее
чувствительны к изменениям в TE.

Signal-to-noise ratio (S/N)
Уровень сигнал/помеха. Служит для оценки качества данных. Для данных метода
ЯМР, в общем случае определяется как отношение амплитуды сигнала к шуму.

Slow diffusion limit
Предел медленной диффузии. Это одно из ограничений при анализе спада
магнетизации в ядрах, в единичной поре. Для медленной диффузии должно
выполняться следующее условие:

где a характеризует размер поры, ρρρρ - поверхностная релаксация, и D �
константа диффузии флюида. В этом пределе, диффузия не обеспечивает
однородную магнетизацию порового пространства. Протоны релаксируют
преимущественно на поверхности поры и магнетизация меняется по поровому
пространству. В этом случае требуются несколько экспотентциальных спадов,
чтобы охарактеризовать магнитную релаксацию в порах одного размера.

Soil water
Поровая вода (почвенная влага); согласно (Jacks, 1954) � вода, удерживающаяся в
хорошо дренированной почве после стекания избыточных вод, когда скорость
низходящего движения существенно снизилась. Soil moisture - вода, которая может
быть удалена из почвы при нагревании её до 105º С.

SSM Logging
Последовательная запись, в одном интервале двух спектров распределения ЯМР, с
различными временами между эхо-сигналами (TE). Используется для оценки
наличия (и иногда типа) углеводородов в пласте-коллекторе и основан на
различиях в коэффициэнтах диффузии пластовых флюидов. Поскольку прибора
MRIL создает в скважине градиентное магнитное поле, то у каждого пластового
флюида есть, в распределении Т2 копонента зависящая от времени ТЕ. Увеличение
TE сдвинет спектр Т2, в сторону меньших значений; этот сдвиг будет разным для
каждого типа флюида.

Shifted Spectrum Method (SSM)
Метод сдвига спектров (МСС). Методика интерпретации основанная на измерении
двойного времени ТЕ, с идентичными временами ТW. Метод использует различия
в диффузивностях между флюидами, и служит для выделения продуктивных

,10/ >>Daρ
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пластов и типизации углеводородов. Название «сдвиг спектров» основывается на
сдвиге в распределении сигнала Т2, в сторону меньших значений, при увеличении
TE. Газы обладают значительно большей диффузивностью, по сравнению с нефтью
или водой, и значительно более чувствительны к изменениям TE. Тяжелые нефти
обладают низкой диффузивностью, и менее других флюидов зависят от изменений
в TE. Метод применяется к распределению Т2 пластовых флюидов и использует
разницу в их сдвиге для типизации.

Signal Averaging
Осреднение (сигнала). Один из основных приемов для улучшения отношения
сигнал/шум, использует суммирование нескольких эхо-сигналов.

Spin
Спин. Собственный угловой момент элементарной частицы или системы частиц,
такой как ядро. Спин отвечает за ьагнитный момент частицы или системы.

Spin Echo
Эхо спина. Повторное появление ЯМР-сигнала после того как FID (спад свободной
индукции) исчезает. Сигнал появляется в результате эффекта инвесии сдвинутых
по фазе ядерных спинов. После того как спины возбуждены действием RF
импульса, из-за неоднородностей в В0 в них происходит спад свободной индукции.
Изохромы (семейства) спинов, являющиеся группами спинов прецессирующих с
одинаковой Ларморовской частотой, во время спада свободной индукции, теряют
фазовую когерентность. Однако во время этого спада изохромы не испытывают
значительного числа взаимодействий типа спин-спин и попрежнему сохраняют
�фазовую память�.

Если второй импульс (180) генерируется за времяτ , сразу после первого RF
импульса изохромы поменяют фазу своих спинов, за точно такой-же промежуток
τ . Значительный по величине эхо-сигнал будет сгенерирован в момент времени

TE = 2 τ . Даже в случае, если второй импульс не 180-градусный, эхо-сигнал все
равно будет сгенерирован, но только будет меньше по амплитуде. Третий импульс
повторит процесс.

Stimulated Echo
Вызванный эхо-сигнал. Эхо, сформированное после того как магнетизация
изменяется сначала в направлении x-y, затем по оси z, а затем опять по x-y.
Вызванный эхо-сигнал наблюдается после трех-импульсной последовательности
сигналов. Из-за неоднородностей магнитного поля В1, вызванные эхо-сигналы
появляются во время цикла CPMG, применяемого в скважинных приборах, в те же
промежутки, что и регулярные эхо-сигналы, и должны быть скомпенсированы при
калибровке.
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Surface Relaxivity (ρρρρ)
Поверхностная релаксация. Способность поверхности вызывать релаксацию
протонов (Kenyon, 1992), т.е. потерю ориентации или фазовой когерентности. Эта
величина зависит от силы взаимодействия флюид-матрица, а так-же от
смачиваемости поверхности. Значения колеблятся в пределах от 0.003 до 0.03
см/сек. в обломочных породах, и принимают меньшие значения в карбонатах.

T

T1
Время продольной или спин-решеточной релаксации. Время, за которое ядерная
намагниченность в статическом магнитном поле достигает термального
равновесия.

T1 and T2 bulk fluids
Время релаксации в жидкости. Для жидкой воды и нефти T1 ≈ (1-1.5)T2. Несколько
экспериментальных данных быле опубликованы для времен релаксации в
сжиженных природных газах. Для CH, наблюдается приблизительное равенство
значений T1 ≈ T2. Однако, поскольку диффузия в газах значительно больше, чем в
жидкостях, кажущаяся величина T2 в газах, измеренная в неоднородном магнитном
поле по CPMG, может быть значительно меньше, чем T1.

T2
Время поперечной или спин-спиновой релаксации. Характеризует скорость спада
поперечной намагниченности  или потерю фазовой когерентности. Обычно T2
меньше чем T1; оба времени релаксации успешно связываются с петрофизическими
параметрами (распределением пор по размерам, соотношением поверхность-объем,
проницаемостью, капиллярным давлением).

T2 in porous media
Время спада Т2 в пористой среде. Для флюида в порах, это время зависит от
свойств самого флюида, от от свойств поверхности матрицы поры и от структуры
порового пространства. В условиях ограничения быстрой диффузии, скорость
поперечной релаксации флюида в поре может быть описан следующим
выражением:

Таким образом, T2 зависит от следующих параметров:
T2bulk � времени релаксации флюида, насыщающего пору;

V
S

TTT surfbulk 222

11 λ+=



Halliburton Energy Services
_____________________________________________________________________________________________

_____________________________________________________________________________________________
Словарь                                                                                                                                                                                                                    334

T2surf- времени релаксации нескольких (первых) слоев молекул флюида,
непосредственно прилегающих к поверхности поры;

λ - толщины слоя поверхностного флюида;
S и V � объем порового пространства и площадь поверхности поры;

В литературных источниках, λ/T2surf обозначают как один параметр, называемый
поверхностной релаксацией (surface relaxivity) ρρρρ. Величина этого параметра
зависит от силы взаимодействия флюид-прода. Он так-же изменяется в
зависимости от смачивающих характеристик флюида и химии поверхности
породы. Обычно вторая составляющая настолько преобладает, что первой
составляющей можно принебречь. Таким образом, T2 пропорционально V/S поры.
T2 пропорционально линейному размеру поры, эта пропорциональность, для
простой геометрии порового пространства описывается линейно. См. так-же Pore-
size distribution

T2 distribution
Распределение времени Т2. В общем случае, пористая порода содержит большое
число пор различного размера. Если принебречь эффектом межпорового
взаимодействия, релаксация в пористой системе, насыщенной однофазовой
жидкостью, может рассматриваться как релаксация в серии изолированных пор
различного размера. Спектр релаксации будет суммарным наложением
(суперпозицией) спектров от отдельных пор.

Время T2 в одной поре пропорционально характеристическому размеру поры,
следовательно, T2 пропорционально V/S и, соответственно, спектр T2 линейно
связан с распределением V/S. Когда поровое пространство насыщает двух или
трех-фазовая жидкость, то в результате действия капиллярных сил, несмачавающая
компонента, располагается в более крупных порах, а смачивающая компонента � в
более мелких. В дополнение, релаксация в несмачивающих жидкостях меньше, чем
в смачивающих, поскольку время Т2 не включает поверхностную релаксацию. И
капиллярный, и поверхностный эффекты, приводят к тому, что время Т2 в
поверхностных смачивающих флюидах меньше, чем в тех-же флюидах в обеме
поры. Для несмачивающих жидкостей такая разница во временах Т2 значительно
ниже. Следовательно, разницу в жидких фазах можно оценить по анализу спектра
распределения Т2 или используя оценку вклада отдельных составляющих
релаксации (например �TR) для случаев с многофазовой насыщенностью.

T2*- Постоянная времени, характеризующая потерю фазовой когерентности в
поперечной намагниченности неоднородного магнитного магнитного поля.
Величина T2* всегда меньше чем T2. Этот спад может быть преобразован, если
применять 180° импульсы, в результате будет сформирован спин эхо-сигнал.

T2 cutoff
Граничное значение времени T2. Величина, которая эмпирически связывается с
капиллярными свойствами флюида, смачивающего поверхность породы.
Применяется для разделения пор (по их размеру) и количественного выделения
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капиллярно связанной воды (капиллярное давление больше 50 psi). Для получения
общей воды (BVI) в обломочных породах осуществляют суммирование пористости,
связанной с временами T2 большими 33 мсек. Аналогично, для карбонатного
разреза, граничное значение T2 составдяет примерно 90 мсек. Заметим, что эти
величины граничныхзначений эмпирические и могут зависить от свойств
конкретной породы.

T2D
Константа времени, описывающая спад поперечной намагниченности во время
последовательности импульсов CPMG, вызванной молекулярной диффузией
градиента магнитного поля. Эта величина пропорциональна времени Т2. Для
прибора MRIL, эта константа для воды мала (и ей можно принебречь) когда TE
меньше или равно 1 мсек. Выражение для T2D

Не следует путать эту константу с временем T1D , которое встречается в некоторых
книгах по ЯМР. Время T1D - время релаксации ЯМР поля в диполе, которое может
быть померено специальной серией импульсов.

T2int (intrinsic relaxation time)
Собственное (истинное) время поперечной релаксации - померянное при нулевом
градиенте магнитного поля.

TE
Сокращение для выражения времени между эхо-импульсами. В серии CPMG это
интервал времени между импульсами, равный времени между соседними эхо-
сигналами.

TI
Время между импульсами RF (называющимися импульсами инверсии) и 1/2-
импульсом в последовательности импульсов восстановления инверсии,
используемых для измерения времени T1.

Time-dependent filter
Фильтр временной зависимости. Применяется для обработки данных ЯМР-
каротажа, которые очень часто содержат высокий уровень шумов. Фильтр
разделяет эхо-сигналы и снижает уровень случайных шумов связанных с
колебаниями температуры. Традиционный фильтр низких частот не может
применяться из-за коротких составляющих времени T2.

Time Domain Analysis (TDA)
Метод анализа временной составляющей (домена). Метод, альтернативный методу
разделения спектров, примяется для обработки данных ∆TR-метода. Интерпретация

DTEGT D
2221

2 12
1 λ=−
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проводиться в области временного домена. Ключевыми составляющими данного
метода являются:

Рассчет величины разницы двух эхо-последовательностей;
Обработка временной составляющей разницы для рассчета насыщенностей,
используя предположенные или измеренные значения времени релаксации в
нефтях/газе/воде и значения их углеводородных индексов;

В методе разницы спектров (DSM) два эхо-сигнала TR, сначала конвертируются в
спектры времени T2 и, затем, вычитаются один из другого. Интерпретация делается
в домене спектров времен Т2. Помехи и методы регуляризации, используемые для
инверсии эхо-сигналов в спектр Т2, могут частично размывать значения пористости
в смежных бинах и при вычитании спектров приводить к негативным значениям
пористости, что естественно, неверно. У метода анализа временной составляющей
меньше проблем, связанных с расширениями спектра времени Т2, происходящих на
границах в результате действия шумов. Это наиболее простой метод для
количественного определения углеводородов.

TR (or TX)
Сокращение выражения времени повтора. Это период времени между
вступлениями (началом) серий импульсов. В руководствах WALS/MRIL, время TR
обозначается как TX или время эксперимента.

Transverse Magnetization (MХ)
Поперечная магнетизация. Часть общего вектора магнитизации, расположенного
под определенным углом к постоянному магнитному полю.

V,W

Viscosity
Вязкость, коэффициэнт вязкости. Сопротивление потока жидкости. Вязкость
вызывается силами внутреннего трения, обусловленного межмолекулярными
связями. Коэффициэнт диффузии D обратно пропорционален вязкости.

Wait Time (TW)
Время задержки. Время между последним CPMG импульсом в 180-градусной
последовательности и первым импульсом следующей последовательности, на той-
же частоте. Это время, когда происходит магнитная поляризация или
восстановление (Т1), так-же называется временем поляризации.

Water of Retention.
Общий термин воды, удерживаемой породой. Часть поровой воды в осадочной
породе, которая удерживается в порах капиллярным давлением при условии
свободного течения; возможные синонимы: реликтовая или погребенная вода
(AGI).
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Water Types
Типы влаги в поровом пространстве. Ископаемые флюиды и вмещающие их
породы находятся в тесном физико-химическом взаимодействии. Имеется большое
количество классификаций видов воды находящейся в поровом пространстве.

Жестко связанной водой является адсорбированная (или гигроскопичная), особо
прочно связанная вода мономолекулярного слоя на границе раздела «порода-вода»,
и химически связанная � конституционная или кристаллизационная.
Конституционная вода (constitution w.) прочно связана с кристаллической
решеткой минерала и находиться в виде ионов Н+ и ОН- (а не молекул).
Кристаллизиционная вода (crystal ~lization w.) менее прочно связана с решеткой и
участвуя в ее строениии сохраняет свою молекулярную форму (например гипс
CaSO4*2H2O или лимонит 2Fe2O3*3 H2O). Может выделяться при нагревании,
переходя в этом случае в воду дегидратации. Физически связанная вода (или
прочносвязанная ~adhesive water) удерживается на поверхности частиц породы
молекулярными силами с заметной энергией связи, определяемой как теплота
смачивания (сорбция). Адсорбированный мономолекулярный слой воды
благоприятствует образованию полислоев воды. Критически важными
характеристиками жестко связанной воды является ее пониженная растворяющая
способность, отсутствие электропроводности и повышенная плотность. Количество
жестко связаной воды зависит от минералогического состава породы, степени ее
дисперсности и состава обменных катионов, и определяет гидрофильность породы;
оно может являться классифиционны признаком.

Рыхло (или слабо-) связанной водой является пленочная (вода двойного слоя) и
капиллярная вода. Пленочная вода (~film water) образует полимолекулярный слой
ориентированных дипольных молекул, она передвигается по породе от частицы с
более толстой пленкой к частице с менее толстой пленкой не подчиняясь силе
тяжести. Вместе с капиллярной влагой, она оказывает понижающее влияние на
сопротивление породы. Обильное содержание такой воды особенно характерно для
глинистых минералов и некоторых вторичных изменений (частичное растворение)
обломочной части породы.

Water-Wet
Смачиваемая (поверхность). Гладкая поверхность является смачиваемой, когда
сила притяжения молекул воды и молекул поверхности больше чем внутренне
отталкивание между молекулами воды. Угол капли на контакте со смачиваемой
поверхностью менее 90° градусов (померянный с внутренней стороны капли).

Wettability
Смачиваемость. Способность твердой поверхности быть смоченной при
соприкасновении с жидкостью. Жидкость смачивает поверхность в сучае, когда
поверхностное натяжение жидкости уменьшается и жидкость распространяется по
поверхности. Только смачивающие жидкости в поровом пространстве обладают
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поверхностной релаксацией. Таким образом смачиваемость влияет на ЯМР-
свойства флюидов в коллекторах.

Список некоторых обозначений

γγγγ - гиромагнитный момент
ρρρρ - поверхностная релаксация
χχχχ - магнитная восприимчивость
ηηηη - вязкость
φφφφ - пористость
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1972.

Наиболее полный список работ по тематике ЯМР в скважинной геофизике и
петрофизике, расположен на web-сайте огранизации SPWLA:

 http://www.spwla.org/biblio/nmrbib.htm.
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А
А0   290
А0mul     285, 290
A1IENoise   291, 297
A1NOISE, A1OFFSET, A1RING   290, 297
активация (активизация)   6, 37, 152

двойного времени задержки TW
24, 38, 108, 219,  241, 246, 249, 303

двойного времени между эхо-
сигналами TЕ   24, 179, 220, 242, 252, 303

частичной поляризации   203, 152
стандартная   241
стандартная Т2   242, 152
общей пористости   16
с расширенными возможностями

240, 256
цикл   238, 242

амплитуда   10, 12
антенна   3, 134

радиочастотная  132, 135
Арабский залив   209
Арчи    91, 198
Аргентина   215
Австралия   27, 30

Б
бин   303

В
В0   52, 130, 136, 143
В1   54, 58, 273

катушка   295
В1А, В1В   297
В1mod   273, 297
BVI   9, 17, 32, 80, 86

граничное значение   81
BVW   9
ВНК   176
вектор намагниченности   54

визуализация магнитного резонанса   3,
48
вода остаточная, 81, 119, 33

капиллярная   6, 94
подвижная   33, 80
суммарный объем   15, 122, 200
суммарная связанная   80, 90

водонасыщенность   25, 33, 196, 201
водород 3, 48
время

магнетизации Т1   48, 53, 65
релаксации Т2   65, 122

вязкость   107, 120

Г
газ   23, 108, 122, 173, 209, 232, 259

остаточный   93
ГВК   32
ГНК   176
гидроразрыв   223
гидрофильный    77, 90, 107
глина   9, 34, 37, 94
глубина исследования   135, 144

Д
данные, регистрация   37, 177, 202
датчики   276, 296

_____________________

Алфавитный
указатель

_____________________
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дефазирование   58
диапазон   155
диатомиты   111, 264
диффузия   70, 174, 181

усиление 184
контраст   106, 114, 117

Е
Е1   285
Египет   27, 169

З
заканчивание скважин   221
запись   10, 167
зонд   4, 7, 37

И
индекс свободного флюида (ИСФ)   15,
17, 86, 296

связанной воды   88, 296
инверсия   15
Индонезия   184
инкременты   75, 90
интерпретация   8

комплексированием   25, 194
собственно ЯМР   163

исследование, объем   4, 39, 140

К
кажущийся коэффициэнт диффузии (Da)
181
кажущаяся пористость   181
кажущаяся проводимость воды (Cwa)   181
калибровка   73, 280, 288
канал, поровый   78, 91
карбонаты   19, 68, 77, 107, 209, 264
Карр-Пурселл-Мейбум-Гилл, цикл   58
керн   13, 83, 170
Коатеса, уравнение   216
коллектор

низкоомный   33, 205, 208
гидрофильный   192
трещинный   94

кросс-плот   171, 183, 199, 222, 303
Кюри   53

Л
LWD   42, 173, 209
Луизиана   221

М
MAX4    268
MCBW   17, 95
MFFI   17, 32, 96
MPHI   96, 303
MRI   1, 38, 48
MRIL каротаж   3, 48, 154

прибор   130, 136, 141, 157, 243,
268
М0, магнетизация   51, 59, 74, 97, 131, 158

магнит, постоянный   139
математическая модель   189
материалы, полевые   10
матрица   9, 94
Мексиканский залив   19, 33, 83, 173, 333
метод

DIFAN   181
EDM   184, 215
MRIAN   195, 200, 208, 218
анализа временной компоненты

(TDA)   25, 107, 164 205
разности спектов (DSM)   24, 164
сдвига спекта (SSM)   178

многочастотные, измерения   142, 149,
275
моделирование   116
модель

SDR   92
StiMRIL   194, 201
Ваксмана-Смита   7
двойной воды   7, 195
Коатеса   19, 32, 91, 93
объемная   8
пористости   94, 198
проницаемости   91
свободного флюида   93

мониторинг   209, 295
микропористость   6

Н
NE   58, 137, 154
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неоднородности
ствола скважины   38

нефть
вязкая   9, 23, 38, 107, 119
легкая   9, 22, 116, 123
"мертвая"   67, 106
сырая   34, 107, 120

О
обмотка   58
оптимизация   222
осадконакопление   77
отсечка   17, 80

П
палетка   41, 292
параметры записи   242, 245, 248, 261, 271
песчаник мелко-зернистый   77, 107

"туффовый"   215
перефазирование   57
перфорация   215
планирование   229, 264
поверка   279, 286, 300
полоса пропускания   131, 145
поляризация   47, 48, 53, 133, 203, 244,
304
помехи   152
пор, размер   6, 77
пористость   4, 6, 27, 88, 299

по ЯМР   12, 37, 230, 237
эффективная    37, 89

прецессия   49
прибор скважинный   4,
приращение   271
протон   48, 59, 131, 134, 142
проницаемость   88

по ЯМР   19, 27, 91

Р
PHER, PHNO, PHCO   277
RDT (пластоиспытатель)   42
RF   135, 143
РВО   118, 124, 213, 217, 253, 265
РНО   118, 126, 173, 233, 249, 259, 265
распределение

Т2   14, 230

инкремекентное
разрешение, вертикальное   134, 138, 142,
268, 294
реверберация   147, 274
регистрация данных   166
регуляризация   76
резонанс, магнитный 48
релаксация   23, 47, 64, 112

вызванная диффузией   68, 71
объемная   66, 85
поверхностная   67, 121

С

CBVI   81, 86
CBW   9
CPMG, цикл   59, 62, 134, 295
Chi (χ) 2кай"   274
SBVI   88
Северное море   87, 111
сердечник   159
сигнал, наведенный   147
скользящее  среднее   268
скорость записи   134, 268, 292

спада   11
смачиваемость   88, 120, 125, 265
спад

многоэкспонентный   14, 71, 135,
234

свободной индукции (ССИ)   54,
57, 132
спектр   234
спин   50, 58
Стралей   107
стимуляция   215
суммирование   281

Т
T1 10, 113
T2, 10, 113, 243
T2cutoff   83
TE   154
температура   41, 279, 297
Техас   221
томография мозга   2, 6
Травис Пик   221
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У
углеводородный индекс   10, 97, 110, 304
углеводороды, типизация   22, 106, 113

легкие   219

Ф

FID (ССИ)   55
фазовая коррекция   277, 283
Фарадея, камера   286
ферромагнетик   141
физика ЯМР  47
фильтрат   96
флюиды, пластовые  5, 234

анализатор   42
ЯМР-свойства   6, 22, 108, 231

Х
Хлопковая Долина   221

Ц
цеолиты   215
централизатор   159
цикл активации   47, 156, 238, 242

Ч
частичная поляризация   203
частота Ларморовская   49, 139
частота

качание   280
прецессии   49
рабочая   41, 154, 271, 292

Ш
шум   61, 135, 274, 278

Э
эспонента   76, 200
электроника   159, 287
эмпирический подбор   75
эталонирование   284
эхо-сигнал   10, 23, 47, 58, 61, 131, 151

Ю
USBM   121

Я
ЯМР   1, 41, 59, 106

проницаемость 221
спад   60, 237




